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Abstract—When nickel freezes into its less dense melt, that is cooled by more than 175°C below its
equilibrium freezing temperature, the solidified material exhibits—as first observed by J. L. Walker—
dispersed fine-grain structure (presumably as a result of cavitation induced by huge negative pressures
surrounding the growing nuclei), whereas for undercooling less than 175°C the observed structure is
coarse grained. The purpose of the present analysis was to provide numerical (theoretical) estimates for
the pressures, flow velocities, and time scales involved. This necessitated study of freezing as proceeding
from a finite initial embryo. Using a “generalized orthogonalization method” of solution, the freezing
process is traced out, taking the pressure dependence of freezing temperature also into account, on the
basis of incompressible inviscid fluid dynamics. The solution of the governing differential equation
system is represented as a sum 3 K-l Fy of [vector] functions Fi.(£) (¢ is the dimensionless radial
coordinate) whose time dependence (7 is dimensionless time) is determined from orthogonality con-
ditions (boundary layer integral equations), using in the integrand weight functions of type ¢*m;
k=0,1,..., K-1. We refer to approximations I, I, III, . . . when K = 1,2, 3, ... (K = 1 corre-
sponds to the conventional boundary layer solution of the type von Karmin—Pohlhausen~Goodman-~
Veynik), and to approximations II1, 1T, ITo when K = 2 and m = 1, 4, 0. Using for TFi(£) a sequence
of perturbed (in 7) decaying (in ¢) exponentials, it was found that the graph of solution Iy is, in its
asymptotic behavior (= > c0), indistinguishable from the well known rigorous solution of the problem
where the nucleus grows from zero radius and pressure dependence of freezing temperature is ignored.
However, this asymptotic era is not reached until elapse of about 10-7 s from start of growth, whereas
the maximum inrush of fluid on to the growing nucleus (at a speed exceeding 100 m/s) occurs in the first
1011 s and is accompanied by tensions of several thousand atmospheres. This first portion of the
phenomenon (to 1011 s) may be represented by ascending power series in /2 in the perturbation
factors, the last portion (past 10-7 s) by descending power series in 71/2; the huge intervening portion
must be bridged by numerical integration of the pertinent differential equation system. Besides
corroborating the expected pressure distribution, the analysis brought forth an unexpected result.
The freezing process, as now described, is, for the case of precisely zero density change, totally different
from that for infinitesimal density change. The latter starts from a finite initial radius, with zero
velocity, the former with infinite velocity. This discontinuity (with density change) in the solution
points to the need for further studies.

NOMENCLATURE A heat of fusion of solid (X' in
Dimensionless equivalents of the dimensional mechanical units);
quantities are in brackets; examples, in braces; u, liquid velocity;
some symbols introduced and used only in one y = pg(I"), weight density of liquid (solid);
place are not listed. c(C), specific heat of liquid (solid);
r[€], radial distance; k(K), conductivity of liquid (solid),
R [#), radius of freezing front; e, diffusivity of liquid;
T[U=%( + €)], temperature; i, chemical potential;
p Al pressure; S, entropy;
t 7, time; ®, Boltzmann’s constant;
a' [o], interface surface energy (in me- e=Y=5—1, factor of density change
chanical units); {(2.14), (3.19)};
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R x, conductivity ratio {(2.16)};

é, equation;

4, w,l, functions appearing in U {(3.6)};

B,a, 8, v,y, A(b,a,d,f,c ), coefficients in
asymptotic (convergent) expan-
sions of &, A, w, Ur, %c, [;

2w ¥, {4.9};

B:'g’ C’%’ D, '@’ {(4'10)};

s, degree of inconsistency {(5.22)};

L, {(4.18)};

<O coefficient of 7% {(4.2)}.

Subscripts

5 equilibrium freezing value {77};

F, pertaining to freezing front {Tr};

n, nucleation value {R,};

0, initial value {Ro};

v, at instant of maximum velocity
{Ro};

M, at instant of maximum tension
when this is at time zero {— pm};

m, at instant of maximum tension
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when this is not at time zero
{—pm};

c, at instant of zero pressure {f};

C, pertaining to nucleus center
{Uc};

S, pertaining to solid phase {ps};

0, atr = 0 {Tw};

s.C., due to surface energy {ps.e.};

stag, stagnation value {pstag};

u, due to undercooling {#,};

d, due to density change {%q};
o, outside of interface {§o};
I, inside of interface {&'r};
B, on boundary {€g};
Superscripts
a, absolute {7%};
~, approximate {U};
s, pertaining to various components
of U {(3.6)};
N pertaining to least inconsistent

choice {f L

Part 1. Application of ‘‘Generalized Orthogonalization Method’’ to Solution of
the Nucleus Growth Problem

1. INTRODUCTION
WHEN the freezing phenomenon is accompanied
by density change, the dynamics of fluid motion
cannot be ignored—for when the frozen phase
is denser, an inrush of fluid is required to fill
the void that would otherwise be created near
the freezing front. This inrush of fluid is accom-
panied by huge negative pressures. The negative
pressure is, in fact, infinite when a spherical
nucleus of originally zero radius begins to grow.
For this reason the greatly simplifying assump-
tion employed in reference [1], that of zero
initial radius (which permits solution of the
problem in closed form), must be surrendered
and replaced by the more realistic assumption
that a couple of dozen liquid molecules con-
glomerate into a solid-like mass (“embryo’’) and
then, suddenly, the freezing phenomenon takes
over. Theories are available for the ways this
“nucleation” takes place [2-4]; in fact, quantita-
tive estimates are furnished for the number of
participating molecules and the radius R, of a

matastable nucleus (see, e.g. reference [2b],
p. 260; reference [4], p. 245). The foregoing
estimates are derived from molecular-kinetic
considerations. But once the initial nucleus with
radius R, is established, its further growth may
be studied by the msthods of continuum fluid
mechanics and heat transfer. The need for such
an investigation was signalled by J. L. Walker 5]
and his followers [6] who observed a fundamental
change in the nature of freezing into an under-
cooled melt. Walker noted that, for undercoolings
less than 175°C, nickel freezes in coarse grains
(grain diameter of the order of cm); for under-
coolings larger than 175°C, the solidifizd metal
is fine grained (grain diamster of the order of
10-3 cm). Walker attributed this to occurrence
of cavitation when the tensions about an in-
cipient nucleus becoms larger than the fracture
strength of the liquid. Fluid fracture strength
was estimated by Fisher [7], and his method of
estimate was also adopted by Irwin [8]. Accord-
ing to Fisher’s formula—equations (61) through
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(63) of reference [1]—liquid nickel should
fracture when subjected to a tension of about
50000 atm; but it was pointed out that this
crude estimate may be in error (the estimate may
be too high) by a factor of 10.

The analysis given in the present paper indi-
cates that, at an undercooling of 175°C, tensions
in excess of 2000 atm develop around a growing
nickel nucleus, and persist for time spans of
10-11 s, The velocity of the inrushing fluid
exceeds 100 m/s for about 10-1¢ s, The huge
pressure variations make it mandatory that the
pressure dependence of freezing temperature be
accounted for. The present analysis, following a
suggestion of John W. Cahn, properly incor-
porates this effect. Another consideration that
the huge tensions and velocities call for is the
accounting for compressibility of liquid and
solid. The present analysis based on incom-
pressible fluid dynamics, will furnish the picture
that the tension field and flow field are instantane-
ously created throughout the fluid at time ¢t = 0;
this picture is, of course, incorrect. An even
more tantalizing inconsistency to which our
analysis leads is the implication that the situation
becomes graver and graver (the tension maximum
increases to infinity) as the density change
during the phase transformation decreases to zero.
This conclusion is reached by studying the
behavior of, say, a sequence of samples of the
given metal, all having the same properties,
except for the density change (see Fig. 11). It is
not clear at this point whether this crisis can be
resolved by incorporation of compressibility
effects, or whether further physical principles
must also be invoked.

Future refinements of the theory should in-
corporate, as already mentioned, compressibility
and viscosity effects,! the limiting cases of
e = —1 (conversion of liquid into vapor) and
of very small |e¢| (this seems to present a
“boundary layer” effect with respect to the

{ The present theory predicts that, while freezing
velocity rises (except when the density change parameter

e = 0) to a maximum R, in a small time #, (~ 10-115),
the maximum tension, — pyy, is instantaneously estab-
lished at r = 0. A theory incorporating compressibility
should lead to the more realistic picture that — py; also
requires a rise time fy, although this may be negligibly
small compared to ¢,.
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parameter ¢), as well as a study of pressure wave
interactions with other nuclei and other pressure
waves that play a vital role in determining the
nature of the grain structure of the metal.

The paramount questions, however, pertain
to the kinetic foundations of our assumed initial
condition: an embryo of critical radius R,
exists; this is carried by an energy fluctuation
into a size Ro > Ry. Are there other, more
suitable fluctuation mechanisms that will like-
wise start off the process ? Is use of deterministic
continuum mechanics permissible in the small
time and distance intervals involved (¢, and
Ry — Ry) during which all the interesting pheno-
mena occur, or should a probabilistic-molecular
approach be adopted ? The importance of such a
query becomes apparent from Fig. 10(a). A
»T'% energy fluctuation, at 70° undercooling,
carries the nickel nucleus from metastable
radius size R, to initial radius size Rp = 1-02 R,.
In contrast, the radius at the instant of maximum
velocity, t, = 3 x 10-12 s after start of freezing,
has grown only to R, = 1-008 Ry: the change in
radius in time #, is (except for the largest under-
coolings) less than that produced by the original
fluctuation.

In spite of these reservations about the physical
foundations of our approach, a hydrodynamic
study, based on incompressible inviscid fluid
dynamics, may be regarded—as matters now
stand with the freezing problem—a valuable
forward step. It leads to results for metals which,
when the density change is not too small, are
consistent in their main features with the ex-
perimental evidence of Walker, and with Fisher’s
estimate of fluid fracture strength. The mathe-
matical approach, a generalized orthogonaliza-
tion procedure (alternately, it may be regarded
as a generalized boundary layer method) is also
of interest, per se.

In section 2 of the paper the governing partial
differential equations of the problem (2.17-21)
are established. In section 3 these are converted,
by the orthogonalization method, into approxi-
mating ordinary differential equations (3.15).
Section 4 presents the solution for = > 1 and
agreement with the conventional solution (where
growth from zero radijus is assumed) is estab-
lished. Section 5 deals with the case of » < 1
(start of growth). Section 6 discusses various
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critical radii (nucleation radius, radius at time
of maximum velocity, at time of zero pressure).
The foregoing sections constitute Part I of the
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solution. Part II of the paper deals, more speci-
fically, with the nickel nucleus. In section 7 are
presented numerical results based on the methods

paper, and are concerned principally with defini-
tion of the problem, establishment of method of

of sections 4 and 5, and numerical integration in-
between. Section 8discussesthesingularcasee=10.

2. THE GOVERNING EQUATIONS

The governing equations for the velocity #, pressure p, and temperature T of the inviscid, incom-
pressible liquid phase, in spherically symmetric coordinates (see (1) of reference [1]) are:

Continuity: (rPuwy=20

Motion: Ur + uy = — pylp (2.1a, b, ©)
Heat: Tt + uTly = x (Tyr + 2T4/r)

These are to be solved for the boundary conditions (see (3) of reference [1}):

at r=0: p=pn I=T (2.2b, ¢)
(the condition

at r=ow:u=90 (2.2a)

cannot be imposed, because of our restriction to incompressible fiuids, but it will be found to be
obeyed anyhow), and

1+ e,
TSR T—Tr=T,+ AT (233, b,0)

at r= R(t) = freezing front: u = — <R, ——;Tr:

K

Here k, ¢, y = pg, « = k[yc are conductivity, specific heat, weight density, and diffusivity of liquid
phase, and X, C and

F=0+9y 24
are conductivity, specific heat, and weight density of solid phase. ¢ denotes the factor of density

change. A = heat of fusion of the solid in thermal units (cal/g), A’ = heat of fusion in mechanical

units (g'cm/g). The formula for the freezing temperature change effected by pressure (7% = absolute
temperature; see Appendix) is:

T¢ - — P Te 1 1
Tp —Tr= AT ==1 {pﬁ' . Po  Pps—Pp } _ 1y [(_ —'f) (pr — pes) __Pse. +pstagjf

A r X \y r
Tj
=TT [Ps.e. + Pstag — € (pr — po)] .5
Here pg is the pressure on the solid phase,
Ps.e. == 20'|R (2.6a)
is the pressure on the solid phase contributed by interface surface energy (g-cm/cm?), and
Pstag = pup[2 (2.6a)

is the stagnation pressure. up, pp, Tr are speed, pressure, and temperature of the fluid at the freezing
front. Ty is the equilibrium freezing temperature for an ambient pressure pe and planar interface.
The continuity equation (2.1a) is satisfied by

u (r) = R%u (R)/r? (2.7a)
By virtue of (2.3a) we may also write

u(r) = — ¢ R2Rjr? (2.7b)
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The equation of motion (2.1b) may be replaced by the integrated (Bernoulli) form (see equation
(1b*) of reference [1]):

pr)—po W 2 r
___.__P =—5—% udr (2.8a)

D

which by virtue of (2.7b) becomes
p(F) — Peo 1eR1R2  R2R ) RR2
—_— e — € ——

and yields for the pressure at the front
pr =p(R) = po — pe {RR + (2 + ¢[2) R} (2.92)
From (2.6b), (2.7b) the stagnation pressure is
Pstag = pulf2 = pR2[2 (2.9b)
Consequently, by (2.5):
' 20’ - 5 + €
— T AT/Tf; = Dg.e. T Pstag — E(PF - Poo) = —E + P€2 (RR + ) Rz) (2-10)
The relation (2.10) may be rewritten in the form
20 (1 1 RR + (5 + ) R?j2
— — a ) __ 2
Tr—To =T% [I‘/\’ (Rn R) € T ] 2.1D)
In the foregoing
"ITX e T/
Ry 24’/ _2cTY @.12)

T 1—TeTe” TX U,
[Uu is given by (2.16b) below] is the critical static radius (the “nucleation radius’) at which, due to
surface tension effect, T is depressed to Two!

Tr— Tw=0when R= Ry, R=R =0 (2.13)
Next we consider the temperature equation (2.1c) which, by virtue of (2.7b), becomes
RR\T, T
Trr + (2+ Y—R)l——‘=o, Y=e (2.14a, b)
kr Jr k

Occasionally (for the purpose of comparing our analysis with other methods) one may desire to
neglect thermal convection, and accordingly set

Y=0 2.15)
We non-dimensionalize our equations by writing ]
§=r{Ro, ()= R/Ry, 7=«t/R}, j = Rigp[edy (2.16a)
_c TS TS @ Ty «®
U(¢, 7) = (T — Tw),) Uu“T(l —=T—,}), Ua~1—+—€~x~m (2.16b)
R=Klk, A = Kc/kC(l + ¢ (2.16¢)

for distance, radius, time, pressure; temperature; relative conductivities. Here Ry is a suitable
reference length, to be specified later, in (2.21), as the initial radius of the nucleus; U,z will be referred
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to as the ‘““density parameter”, Uy as the “undercooling (parameter)”. We shall use dots to denote
= derivatives of dimensionless quantities, like #. Dotted R denotes ¢ derivative. Then the “Outside
equation” (2.14) becomes

RR\ U, 4
subject, in accordance with (2.2c), (2.11), (2.3b) to the boundary conditions
E=o0: U=0
£ = U=UFEUu(1—§f')——Ud(.%9?+5—;6%2) (2.18a, b)
E=R: Ep=(1+ R+ U (R+0) — RU(Z—0)=0 (219)

We refer to (2.18b) as the dynamic temperature relation and to (2.19) as the freezing (or moving)
boundary condition at the interface.

Condition (2.3b) implied that the frozen nucleus is isothermal (at 7»); an equivalent assumption
is that K = oo. In equation (2.19) we slightly generalized the relation, admitting temperature varia-
tion also in the frozen phase. Correspondingly, we must state the conduction equation also in the
frozen phase (“Inside equation™)

2 . 1
1= Uy + EUg‘— 7 U,=0 (¢<%) (2.20)
The initial conditions are
r=0 B=Ro=1, #=0, U=0 (2.21a, b, c)

The pressure expression at the front (2.9a), is now written in the form

fro — fiF - 2E_ 2t 1 2 + ef2) (2.22)

3. GENERALIZED ORTHOGONALIZATION METHOD

Solution of a differential equation &(U)= 0 by the conventional orthogonalization method
(see, e.g. Collatz [9]) consists in seeking an approximate solution U of the form

- K
U= Fy+ 3 Ci Fr (z, X) 3.1)
1

(here Fy satisfies the inhomogeneous boundary conditions of the problem, the functions Fi(k > 1)
satisfy homogeneous boundary conditions; =, x are abbreviations for the independent variables

T1, T2,...} X1, X2,...) and determining the coefficients Ci from the conditions of orthogonality of
error £(0) to conventiently chosen functions gi:
k=1,2..., K &0O) ig ie [ &) gr(r,x)dxdr=0 (3.2)
T, X

In particular, when the gi are chosen as the Fi, then the method is referred to as Galerkin’s method.
Furthermore, if 7 and its derivatives up to the orders appearing in & are continuous, then &0
is also continuous; if, moreover, the integrand vanishes near infinite boundaries in an adequate
manner and the g constitute a complete set of functions, then &) > 0 as K - co. Hence U tends,
as K - co, to a solution of &(U) = 0.
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A generalization of the conventional orthogonalization method consists in the following. We
adopt as starting point the approximate solution

0= § Fi (%%, wy (9)) 3.3)

i.e. instead of numerical coefficients Cy we now seek to determine functions wy(<) (which, moreover,
need not appear as linear factors appended to the Fi). And in place of (3.2) we now write

k=0,1,...,K: [&0D) g(v,x)dx=0 (3.4)
X

i.e. we omit the = integration. Theh the orthogonalization conditions (3.4) reduce to K 4 1 ordinary
differential equations for the functions w; if = is a single variable =, and to partial differential equations
for the functions wj if = represents an aggregate of variables 71, 72,....

In our problem, equations (2.17, 20, 19), we have the single « coordinate 7, and the single x
coordinate €. We choose for functions gx the two sets

>R go=1,g=(— A } (350, b
ES<A: h=1hnh=4¢
while we write (omitting the tilde from the )
§2R: U= Ur {4 exp[— (£ — B)W] + A" exp [— (§ — A)/w"]
A exp = (E — B + ...} A+ A A+ .. =1 (3.60)
§<Z: U(r) = Uc + (Ur — Uc) (§/R)pH1 (3.6b)

i.e. we assume that U(+) decays exponentially from the value (2.18b) at &, to 0 at £ = oo, in the
liquid phase, characterized by decay distances w'(z), w''(7),... and coupling functions A%(7);
while U(7) rises from Uc(7) at the sphere center to Ug(7) at the interface as a power of £/, with
variable exponent 2 + 1/I(v). We shall refer to (3.6a), when terminated with A® [exp — (¢ — %)/
w(k)] as the 4(¥) (or briefly, kth) approximation. Clearly, our assumed expressions (3.6a, b) automa-
tically satisfy the boundary conditions (2.18a, b) in the somewhat stricter form:

=o0: U= §gU;=0, ¢E=R: U=Up (3.1a, b)

while the freezing condition (2.19) must still be imposed.

The particular choice (3.6b) is suggested by the observation that the rigorous solution U(7) of the
problem where a unit temperature jump Ur — Ue = 1(7) [1(+) = Heaviside function] is imposed at
time 7 = 0 on a sphere surface Z creates at small times a surface gradient

T < 1: 0U[o]gp o = 1/+/(m7) (3-8)

see Carslaw and Jaeger [10], p. 348, equation (6). For the Ur — U¢ = 1(7) boundary condition our
expression (3.6b) likewise gives an infinite surface gradient at time 0 if (3.11c), (5.11) is assumed,
and so does (3.6a) for aU/0€]g .. o if (3.11b), (5.11) is assumed.

Integrating the outside equation (3.4) by parts, we obtain

0= ;aogk £ d¢ =;f (& U, + Y R U, — U, &) g dé

= {8 Ug+ YRRV} gl — [[8U+ YR Ulgsgdt - (9)

— [Uedg] g — (d/dr);f Uge £ d€ + 9}; Ugr & d¢
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i.e. on observing (3.7a) and noting that gx{(#) = 8x¢ (= 1 for k = 0, and = 0 otherwise; k is non-
negative, but need not be an integer)

(d/dr) éf: Ugs £ dé = — 92 [U (% -+ 0) + (1 + ¥) % Ur] 8o

~ JUe U+ YH R U} gig — € Ugar] A€ (3.10a)
while from the inside equation, noting that (%) = %, by, = 0, we ﬁnd similarly
(d/dn) j Uky & d¢ = FH[A Uy (% — 0) +RUp) = A f & Ug hy d§ (3.10b)

In conjunction w1th the dynamic temperature relation (2.18b) and the freezing condition &5 = 0,
now reading

. A’ A" A’” 241 _Us— U
(1+e)92-—(1 ot .)UF+ “f R=—=0 (3.100)

equations (3.10a, b), using 2K -+ 1 equations (3.10a) (e.g. k=0, 1,2,...,2K; o1, k=0, 4, 1,. ..,
K) and two equations (3.10b) { = 0, 1), constitute 5 -+ 2K differential equations for the 5§ + 2K

unknowns &, Ug, Ue, W', I; ', w"',...; A", A"",. .., subject to the initial conditions
r=0: #=1, R=Up=Uc=0 (3.11a)
w=w'=w"'"=,..=0 [I=0 (3.11b, ¢}
A" =a), A" =a) ,...; A=ay=1—a —a; — ... (3.11d)

where a,, a;,... are suitable constants. Henceforth we shall omit the single primes associated
with the 4" and w’ terms.

The k =0, j = 0 members of (3.10a, b) may be referred to as the primitive boundary layer
approximation; for these are the equations one is led to if, according to the precept of von Kdrmin—
Pohlhausen for hydrodynamical problems (see, e.g. Schlichting [11}) or Veynik {12] and Goodman
[13] for heat conduction problems, one multiplies the governing partial differential equations

8o = 0, &1 = 0 by the volume element 4#£2 d¢ and integrates by parts The k =j=10 equatlons

relateJthe change in enthalpy/4= outside and inside the nucleus, ( j Ug d€)® and ( j' vedg®,

to the heat poured into the respective regions at the boundary. The k >0, j > 0 equations are
recognized as boundary layer equations, utilizing weight functions gx, ;.

For the choice (3.5), (3.6), (3.7), the equations (3.10a, b) become, on carrying out the indicated
integrations and dividing the (3.102) equations by k!, the (3.10b) equations by #/+1:

d% {UF [R2{AWEH L AW B+ 1Y 4 20k + DR{AWEE + AWk )

-~

(k4 Dk + 2 {AwkS 4 47w k48 L }}}

— 510 Upgzz[ e Y).@] F (1 — S0 Us [ {Awk-1 JENED
T AW Y A kR AWE - ATWE £} 4 Kk - D{AWEH - A ]
— (1 — 3k0) UpB [(1 + V)RE{AWE 4 A"'w'"'% 4 ...} + 2k R{AWF1 b A W B+ 4}

F ki + D{AwE?® + 47w B2 1 Y] J
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1 d Q@I+ DG+ 3) 1 ,
m‘ﬁa{“’”[ T+ +9 UC+1+’(f+5)UF]}

G+ D+ 1)

— AU TG T )

A (Ur — Ug) (3.13b)

Performing the indicated differentiations, using the notation
UU =Un)/Un=114+ ¢, E=1+Y (3.14)

{m = any subscript), and restating also the equation Z€ 5 = 0, one finds the equations, valid for
j=0,k=0:

1 2041 . 1 . [ 2041 .
— gy |
PTGy Yot ¥+ We =40 |15 2%
2 GI+)QI+1) ] .
TUTIGTOE T IFIGE Y ] =0 G.I5)
. 1 A A"
M+(2+—[)K(%—%)-(;+W+...)@%F=o (3.155)

(AU WY -2+ DB+ DE+2wH+ { 1T+ ...
+ {A%Urwi} [k + DW{FA2 + 2(k + 2)%w + (k + 2) (k + 3w}
1~ R{ER + Ak + DRw + (k + 1) & + w2} — B2w — 2kR — k(k + 1) w]
+{YV[V+...=0

Expressions like { }’ [ J” mean: repeat the preceding { } [ ] expression, but replace therein A,
wby A", w'", etc.

We shall regard (3.159) as the equation governing the variation of #¢(7), (3.15}) as the equation
governing /(7), (3.15p) as the equation governing #r(7), (4.3a) as the equation governing Z%(r);
(3.159), (3.15%9), (3.15¢) as the equations governing w(r), w''(+), w'"’(7), respectively, and (3.15%),
(3.153F) as the equations governing the coupling coefficients A4"(7), A"'(). The latter (3.15¢) scheme
refers to the third approximation IIx; III [k in (3.5a) progresses in units of 4] denotes the third
approximation, based on (3.15% % 1. % 2), In first approximation, I, only (3.153) of (3.15%) will
be utilized.

We shall be most concerned with the second approximations II;, II; based on (3.159: 1. 2) and
(3.159, 1. 1), respectively, and particularly with the approximation IIy which one obtains as one
passes, in equations (3.159, % 2¥) to k = 0.

For most purposes (i.e. for calculating Figs. 10) we shall need the solution only for small times
(as represented by ascending power series in 71/2), and for large times (as represented by descending
power series in 71/2), and these solutions can be determined in the IIp approximation very con-
veniently from II; by passage to k£ = 0 in the solution itself. However, when we are concerned with
behavior of the system for all times (i.e. including the range  ~ 1), then we must integrate the
pertinent differential equations numerically from the small time solution forward to the large time
solution or from the large time solution backward to the small time solution, as in Figs. 6 through 8.
The outside equations Il are obtained from (3.15%) in the same fashion as (4.17¢) in the next section
is obtained from (4.11), utilizing the relations (4.14). Since the equations are lengthy and we shall not
use them in the sequel, we do not write them out; we merely refer to them as (3.16; - ). When we
regard /(7) as the known function (4.7)—we rewrite this relation now as

(3.158)
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l=24, 10)=0 (3.17a3)
and denote furthermore
=R = (%" (3.17b)

then (3.17a, b), the dynamic temperature relation (4.3a), the outside equations (3.16, > ') the inside
equation (3.159), and the moving boundary condition (3.15g) constitute eight first-order non-linear
equations—not containing time explicitly—in the eight unknowns /, %, z, w, %p, A% r, % ¢, W

4. SOLUTION FOR 7> 1
The pressure effect on freezing temperature rapidly disappears as the nucleus expands; therefore,

one expects the radius to grow as 712 near = — o, I.e. as if there were no initial freezing point
depression, and the initial radius were zero. More specifically, we assume a time dependence near
infinity

RH=2B0c72[1 + Brp7 12+ B17 1 4...], w=2807"2[l 4 8pppr 124, .], )
w'’ =287 72[1 + & ye T2+, W= 280 121 4 8, 12 ],

Ur=vo+ vipr 24+l .., Uc=yo+yyp7 % +y1r71 4.

I =2 o 7121 + Appr 124+ .., A=o0p+ arp7 124+ o4 1,

A= e A= o
ao+a0+ '"-!— =1, a1/2+a1/2+a'1;12+ =, a1+a;+a’1”+...=0,...

> (4.1)

Placing (4.1) into (3.15), one obtains for j = 0, 1; B; and arbitrary k:

282 70 <(yo — vp) { Bz }> + 282 12 <(70 —vo){ } +yue {14 5 Bz} vi/2 {3 ﬂ{}>

1/50 4 1/50 A
+ 282 ‘1<(yo—vo){}+71/2{1531/z+ / +4A BZ}——vuz{ /31/2+£ +4)\ ,32}

+n {2 B{} — v1{ } + . (4.29)

282, 10 <('yo ) {; i }> + 28L 712 <(‘VO —v){ } 4 iz {‘1‘ +i ;Z}

1 34X
—V1/z{§+zﬁg—o +...=0 (42)

ay R
— Bo 70 <—— 28w + vo {g—l + 8_(')'} + 2,§ (vo — ‘}'o)> — B 77172 <— 2B B1/2 + vo

X{[;%D(ﬂl/z 8112) + 5 ] + []"} + v {%:; + %} + ;—é[(vo BECARA

+ e — m)1> ... =0 (425
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2842 yg 7K+ <[ao 85 [5' B% + 3k + 1) BE, 8w + 3k + D (K + 2) B 8,

FEEDEFDEFY S =g — ko= T e 1L

20080 3 lon 851 [ S 85 (2t K b} + G+ 1) B B (4P
3k i 2)Bo 8% {2 -3k 8

+ G+ b (D 5+ D o8 @+ Bkt ) .

G+ 1) (e 27 G+ B 88 Sy — b (2B (6 — 1) Sy} — K B B

+ k 812} — k(kg“ b2 800 31/2] + 1LY + ey + oo viyafve) 8%} [

+ B+ S+ + DB+ DB 3L + (K + Dk + 2P 8%

£ e+ 1) - _
—fe 2 de SV >4+ =0

— Kk Bo —

Ly

We stated in (4.2) the equations as they appear in the Il approximation. (In the third apprex;matmn
we have to retain alse { V' [ }”" type expressions and o, /5., terms,) Moreover, in the light of
{4.5), below, we did not write out in (4.2;, 2} all the (vo — yo) coefficients, but indicated them mostly
by { }

Because of (2.18b), which we now rewrite in the form

R ) .
Up(z) = Uy (1 —?‘Q}‘) — Uy (sm 42 ‘g ¢ @2)

{432, b)
Y p(r) = Uy Ry RITE ~ U [(6 + & RE + AR

there exists a further relation between the coefficients B and the coefficients vz, Inserting (4.1) into
(4.3a) there results

3
vg == 63,1“, ¥ijg w= o %a-@ngco, By == %@'ﬂgnﬁgﬂ - %‘f%’d ;3,,3, ‘.. (4‘4)

The condition {r% = 0 in (4.2¢, 2}) [we denote the coefficient of +/ by (7)] leads, in the light
of the first expression in (4.4), to

yo = vo = Uy (4.5)

while the two equations {+~12) = 0 lead to a contradiction in the ratio yi;a/v1js. The reason for
this is that the A parameters have not yet entered the scene [they first appear at the stage {=~1) = 0},
and so we have two equations in one unknown, yi/2/vi/2. There are two ways to eliminate this
difficulty. One is to write /(+) in the form

(y=do+ dpr 24 i, . 4.6)

Then Ap properly enters at an earlier stage, and no difficulty arises in solving the two (4.2;) equations
{712y = 0 for yy2/v12 and Ag. The second is to assume the expression of /(r) and correspondingly
discard (4.2}). We shall adopt this second alternative both for the sake of simplicity, and because
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the small time solution of section 5 will be seen to run into difficulty when both equations (3.15;)
are retained. Accordingly, we set

W) = 22X M2 = g 712, Ly = (A7 J2)V2 4.7

where /12 is the expression (5.16a) derived in the next section for small times,
The condition (7% = 0 in (4.2p) gives

I// Q W
Igw:%%ﬂ( + ;;+ ;;1 +'~')s %:i—s_g—o‘ (4.8a,b)
In (4.8b) and (4.10) we adopted the notation
Q = BOO/SOU: w“ = 8:;/&?09 w"l = 3;;,/8005 = ag + n + rn + L (4-9)
Henceforth we shall write  instead of "
Denoting furthermore
Br=ERB+3G(k+ D243 +DEk+Y2+E+DE+2)K+3)
=B8R +3(k+DRPo+3k+DEFDR22+(k+ 1D k4 2k + 3) ? 4.103)
I// p— 1 yza Y1 1 ) a
= BEMBL 3Gk + D2 +3G(+ Dk +2)Q0"2 4k Dk -+ 2Dk +3) o
.@k =B 42k R+ hkk+1)Q, B =3B+ 2k QLo+ k(k+ 1) Q?
B=hBy,, B'=B), B=2% B =3, (4.10b)
C=3224902 411 C" = 3820 + 90?4+ 11 o
D=3Q2+6 D' =380 + 6 0’
(4.10¢c)
€ =20240 € =202 4 Qo
2=0 D" = 0w |
we may write the {7{1+8)/2} = 0 equatlons (4.2%) in the form
ag Bk + (f)k ao Bk + w"’k rer B +
(’f’@u) -1 [ao.@k + ok 1o B + ok 1a B+ .. ] (4.11)
In particular, for £ = 0
aoB+ay B +ay BV 4 ... =88, (4. 110)

The first task, in the IIIy ‘approximation, is to solve (4 o, 4, 1,3, 2) for 2, w, aj, &, ay
(note that ag = 1 — a; — a, ) for given undercoohng Uy = E%y. In the IIo approximation we

must solve (4.20% > /"), below, for 2, w, a,. If we have a first guess Q, @, a",... available for the
quantities £2, w, o',... we may write
=048, o=a+38, a =d, +8.,... (4.12)
and solve for the small corrections 8, 8, 8. ,. .. iteratively, from linearized equations.
Once the foregoing quantities are available, one can calculate B« on the basis of (4.8) from the

formula
Q2
P = (@@ a7, (4.13)
8 from (4.8b), &, from o' etc.
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For the purpose of determining the Ilp approximation, we expand the terms of (4.2%) in powers of
k. Noting that
k k2 k3
wb=14 Iil““’ +i~'ln2w +3'ln3w + ... [In% = (In w)?] (4.14)

we obtain expressions of the following sort:

(riB2y = Q1 fo (x1, y1, 21) + kfv + ke + k33 = Ro + kR1 + k®Ry 4 k3Rs (4.152)
¥y = 0: go (x2, 2, 22) + kg1 + kg2 -+ k33 = So -+ kS1 + k2S2 + k3S3 (4.15b)

where
X1, Y1, Z1 = 8(!)9 8:)9 U-;'; X2, Y2, 22 = 51/2, 8;;2, 31;2; ... (4.16)

(the Ry are independent of xi, yi, 2, { == 1; the Sy are independent of x;, y4, 2, § > 2 ete.), and all
higher k terms are lumped into f3, R3, gs,. ... The equations (4.15a), written out in detail for k = 0,
m, 2m are

Jo= Ro ‘
Jo -+ mfv + m2fo + mPfs = Ry -+ mRy + m2Ry + m3Rs (4.17a)
f0+2mf1+4m2f2+8m3f3=Ro+2mR1-}—4m2R2+8m3R3 H
By rearrangement one obtains
Jo=Ro, fi—2m¥f3=R1 —2m2Rs, fo+3mfa=Re+ 3mRs (4.17b)

For m -> 0 these reduce to
fo=Ro, fi=R, fo=Re (4.17¢c)

The three equations (4.2% % 2¥) are replaced, for k — 0, in this fashion by
72 (Tyja + °Tyi) + 70 (To -+ Tp) 4+ 12 (Togp 4 T/ )+ ... =0 (4189
72 (Ty2 + Ty In 8o + 'Tyjp + T, In 87)
+ 0(To+ Toln 8w+ Ty + Ty Ind)+...=0 (418)
TH2 ("9 4+ Tyyaln 8 + 4 °Tyj2 In 280 + "P;;z
+ T8, + 3T, 28+ 79 )+ ... =0 (4187

Omitting for more convenient writing, the subscript o of B and 8w, the expressions of the I'
are as follows (the I'"” have the same expressions, with ax and & being replaced by o, , 8,):

Tyg=ap {E8 4 3828 4 6852 + 68 — B2/28)
Tiye=ao {3525 + 98824118~ — 138} 4.19)
"Tiyg = ap {3882 + 63 — } 8}
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°To == ap {2 Z BBz + 2828 (2 Bz + S1y2) + 4882 (B1j2 + 2 8152)
+ 12 83312 — (B2/28) (2 By2 — B1y2)} + (aiyz + a0 vije/vo)
X {2020+ 4B 148 —B238}
Ty = ag {E 33172 + P28 (4 B2 + 5 B1y2) + 6 B3% (B2 + 3 81/2) + 28 83812

— (B3/20) 8172 — BBrj2z — ¥ 8812} + (a1/2 -+ ag vija/vo) ( (*150)
X {326+ T7B% 488 — B — 5}
"To = a {3 828815 + B8 (2 Bz + 13 8yy2) -+ 23 83842 — BS1j2 — 8812}
+ (2172 + ao vije/vo) {3882 + 58 — 16} ]
Similarly, in terms of the notation (4.10), the equations (4.11) become replaced by
ag B+ oy B =B|Uy (4.20°)
apC+ay {C"+B'lnw}l=FX) " [awC + a, (6" + o~1B" In w)] (4.20")

ao D+ a) D"+ C"'Inw-+ 3B Inw} = (FU,)1
X [0 +a) (@ + %" Inw+ }0lB In2)] (4207

The rigorous value of the parameter 8. is available in the literature. In the absence of pressure
and density effects (i.e. for £ = 1 etc.), it is given by the “Rigorous” curve in Fig. 1(a). {The curve
is the o7 = 1 curve in Fig. 3 of reference {14}, and the e = 0 curve in Fig. 2 of reference [1]. The
present B, Uy symbols are denoted in these references by V2, Uy and 8, (Ty — Tw)/8. The curve
is plotted also in a number of the references cited in reference [14].} In Fig. 1(a) we furthermore plot
B« as obtained by the present method in the I, Iy, 11, ll¢ approximations [using the approach
indicated in (4.12)}; in Fig. 1(b) we plot the parameter £2; in Figs I{c) and (d) we plot the parameters
ag, a, and o, respectively. In addition, we show a plot in Fig. 1(a) of B in the 4" approximation
where, using (4.119, 1), A" was assigned the fixed (independent of %) value

A'=%=1—4 (4.21)

It will be noted from (4.11) that as %, — 0, also 2 — 0, while as F%,, > 1, 2 — o0, For %, < 1
(and for Z not necessarily 1) the rigorous B« behaves [as is readily verified from reference [1],
formula (31)] as

Beo = (Uu/2)1? = 0-707 % 1/? (4.22a)
while (4.11¢) furnishes, on anticipating that %, < 1 implies
0 <l (4.23a)
the relation
Uy < 10 Q== (6 a0 Uy)'3 (4.24a, 252)
From this and (4.13) it follows that in the first approximation (ap = 1)
B = (346U 2P = 0-953 U2 {(4.24b)
In the IT; approximation, anticipating, for %, < 1, also
w3 € 1, alfay® £ 1 (4.23b, ¢)
(4.112) reduces to
10 = Q/¥Y%, (4.25b)

= Qowla, Uy 4.25¢)
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while (4.11;) becomes

12 = (/YU u)[1 + w?ay/ao] (4.25d)
By virtue of (4.25b) this gives
@ = (ag/5)V2 (4.25¢)
Inserting (4.25e, 24a) into (4.25¢) and noting (4.13), one finds
ap = 20:3UY5, Q=495%5 B=28[v(20)=112%%> 4.25f, g, h)
In the II; approximation, (4.11;, 11, 25a) lead similarly to
12 = QYU = Quag Uy, 175 = (RPNl + w32a, ag] (4.26a, b)
w = (11ao/24)?8, ap = 11-11 %23, Q2 = 405 U° (4.26¢, d, €)
B = R2/v/(24) = 0-827 % 3* (4.26f)
while in the 111/, approximation (4.111/n, 112/, 25a) give
(n 4 D3Bn + 2)/n = Q¥Uy = Qulay Uy (4.27a)
2n + D3n + Djn = (Q/PUL)[1 + o+D/ng] [ag] (4.27b)
I — 1 n/(n+1) 2 2 2 n/(dn+1)
“T [(7 F0Gn 12 “"] - [Gn 2 a”z] 4279
o = [(”(“6*‘1/;3;:2(%’; ‘—*‘ ?;2:“] 3/tan+l) A 2n+2)/@n-+D) (4.27d)
6_o [2(” . 1)n(3n . 2)] ve [2(3_”::;::_1) ] n/an -+ [(n + 1)2(:1 + 2)} R

(4.27¢)

If one regards ag as a fixed (independent of %) constant, as in (4.21), then (4.25b, d) are replaced
by

12 = Q/¥%, (4.282)
and this, in conjunction with (4.13, 24a) yields
B = 2/v/24 = {(aoWu/V 6} (4.28b)

One notes from (4.24b) that, in first approximation, B« rises at small undercoolings as #2/3, in
contrast to the rigorous rise %)/%, equation (4.22a), whereas in second approximation, keeping ao as
a fixed (independent of %) constant, it rises [see (4.28b)] as /3. On the other hand, permitting
variation of ao, the II, approximation (4.25h) furnishes an exponent 3/5, the II; approximation
(4.26f) furnishes 5/9, and the general 1y, approximation (4.27¢) furnishes the exponent (2n + 1)/
(4n 4 1). Thus, the smaller k = 1/n, the closer we get to the rigorous asymptotic behavior #1/%;
but the smaller (inferior) the multiplying numerical coefficient becomes. Thus, the asymptotic
formula (4.26f) of Il is superior to the asymptotic formula (4.25h) of Iy only for %, < 1073,
whereas taking also the nonasymptotic bzhavior into account, Fig. 1(a) reveals that II, is persistently
better than 1 likewise Iy is persistently better than II,; the one-term asymptotic formulas (4.27)
are seen to become less and less adequate as n = 1/k increases.

At the high end of the spectrum the approximations I, IT;, Il are seen to be valid up to
t == 0-082, 0-165, 0-29373, respectively; at these %, values, a, passes through a zero. (Symbols %/,
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and U} are used to denote the undercooling appropriate to a, = 0. The dagger is appended also
to the correspondmg 2, w, B values, ) We have not explored what happens to the II approximations
beyond %1. However, we note that in the 1l approximation the equations (4.20), at 4}, become

EQB 4 32 4 6Q + 6 = 23/,

Q. o
2 — o 1
30 +9.Q+11—1+ "/w[ZQ-l-l-l- .Qzlnw] 4.29° "
QU [
0 +6=——7— |1+ "Qzlnz ]
+ T e kA
It is seen that these equations are satisfied by
g =w=w “lo) = w ey Inw =0 (4.30a)
’7 -Q - % 6
}ola) I w = _(_3___1/_L)_+_ (4.30b)

B,

In other words, w also passes through a zero at % (and beyond 1 it, presumably, becomes complex).
The zero of w is weaker than the zero of ay’, so ' that wley In? w remains a finite number. Solution
of (4.29°% ') yields, for & = 1, the pair of values

Ui, = 029373, Qf = 2-58585 (4.312)
and the corresponding B« is obtained from (4.13) in the form
I, p: Bl = (#1Q2Y2)12 = 0-61626 (4.31b)
For comparison we also mention that for %, = 0-29373 one finds the rigorous value
Rig: B = 0-6150 (4.31¢)

Thus, the 11 and I approximations agree at %/, and differ from the rigorous solution, in regard to
the value of B, by 0-2 per cent. Since 11 and 1 furnish values, which for #, < %} and %, > %},
respectively, are indistinguishable on the graph paper from the rigorous solution, we have not
concerned ourselves with an examination of the behavior of Ilg in the range #} < %, < 1. Rather,
we have decided to adopt Ilp as the approximate solution appropriate for 0 < %, <%/, and I as
the solution appropriate for %}, < %, < 1.

For U, close to 1 (more specifically, for > 1) the I approximation furnishes, on the basis of
(4.29°, 13), the estimate

3U, 2 2
Q(1+E)=IJ—~LU;(1+§+§2)

= lase] = e e/ a)

In Table 1 are tabulated, for € = 0-2,0-1,0, — 0-1, values of Bw, 2, ey, w vs %y in the ITp approxi-
mation when %, << %}, and values of B«, 2 vs Uy in the I approximation when 0:1 << Uy < 1-0.

In what has preceded we have determined all the leading coefficients in (4.1); this involved deter-
mination of the solution of the non-linear algebraic (or transcendental) equations (4.11) [or (4.20)],
as illustrated in Fig. 1. All further coefficients of (4.1) are determined from successive linear equations
{listed in (4.27, 25) and (4.20) or (4.18)], not more than 5 at a time. [We regard the B coefficients as
determined by the v coefficients through (4.4).] Thus, in the II; approximation we solve for vyj2 in

(4.32)
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Table 1. Fundamental parameters

Ilo: Yu
Method € I: Uy 8 (o) @ ag”’
Ilo + 02 10-5 0-02222161 0-0138039 0-0133877 0-956769
10-9/2 0-02403373 0-0240356 00217249 0928582
104 0-02729633 00415367 0-0347011 0-885537
10-7/2 0-0131356 0-0711414 0-0543233 0-823712
10-3 00235582 0-120856 0-0830C68 0-740846
10-5/2 00422736 0-204696 0123403 0-636521
10-2 0-0766249 0-319979 0-177931 0-509782
10-3/2 0-142818 0619653 0-246316 0-353:63
0-08 0-246561 1-04398 0-297776 0-193276
010 0-284036 1-20059 0-3)2780 0-149367
012 0-320204 1-35364 0:330704 0-112838
015 0-373180 1-58088 0-284523 0-0694170
0-20 0-461809 1-96276 0-218561 0-0229372
0-25 0-550686 2-35828 0-0990553 002315913
0-32196 0-69297 2:9830 0 0
I 01 0220276 1-16452
02 0-381733 1-74864
0-38635 069297 29830
04 0-717969 3:09287
06 1-16158 5-39711
0-8 1-98604 11-8330
v =401 10-% 0-02222161 0-0138039 00133877 0956769
10-9/2 002403373 0-0240356 0-0217249 0928582
104 002729631 0-0415366 00347012 0-885537
10-7/2 0-0131355 0-0711406 00543238 0-823713
10-3 0-0235575 0-120852 0-0830089 0-740848
10-5/2 0-0422698 0-204672 0-123412 0636522
10-2 0-0766332 0-349853 0-177966 0-509755
10-8/2 0-142683 0618917 0-246427 0-353296
0-08 0-245890 1-04042 0297684 0-191937
0-10 0-283221 1-19517 0-302256 0-147462
0-12 0-318762 1:31584 0-299373 0-110373
0-15 0-370925 1-56834 0-280879 0-0662796
0-20 0456634 1-93778 0-2C6161 0-0197506
0-25 0-543725 2-31231 0-0707413 0-02173772
0-30638 0-64987 2-7569 0 0
I 01 0231884 1-21375
02 0-408128 1-83725
0-33702 061987 27569
04 0:771090 3-27019
06 1-25319 5-75848
0-8 2-15355 12-7539
1o 0 10-5 0-02222161 0-0138039 0-0133877 0-956769
10-9/2 0-02403372 00240356 00217249 0-928582
10—4 0-02729628 0-0415364 0-0347013 0-885537
10-7/2 0-0131354 0-0711397 0-0543243 0-823714
10-3 0-0235568 0120847 0-0830110 0-740849
10-5/2 0-0422660 0-204649 0-123421 0-636523
10-2 0-0765816 0-349728 0-178001 0-509728
10-8/2 0-142548 0-618184 0246539 0-353031
0-08 0245226 1-03690 0-297593 0-190609
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He: ‘%u
Method € 1: Uy B 2 w a0’
it 0 010 0-282020 1-18984 0301730 0-145579
012 0-317345 1-33822 0-298027 0-107947
0-15 0-368721 1-55612 0277153 00632250
0-20 0-452595 1-91368 0-192958 00168341
025 0-537104 2-26849 00445722 0-03809378
028 0590286 2:48410 00483140 008158509
029373 061626 2-58585 0 0
1 01 0-25206% 1-27078
02 0439311 192994
0-29373 061626 2:58585
0-4 0-834244 3:47982
06 136262 6-18912
08 2-35431 13-8570
ko — 01 10~% 002222161 00138039 0-0133877 0-956769
10-9/2 0-02403372 0-0240355 00217249 0928582
104 0-02729626 0-0415362 00347014 0-885537
10-72 00131352 0-0711389 0-0543247 0-823714
10-3 0-0235561 0-120843 0-0830131 0740851
10-5/2 0-0422622 0204625 0123430 0636524
10-2 0-0765600 0-349632 0-178037 0-509701
10-32 0-142414 0617454 0-246651 0-352767
0-08 0244569 1-03343 0297503 0-189292
0-10 0281032 1-18460 0-301201 0143717
0-12 0-315953 133074 0296665 0105559
0-15 0-366567 1-54422 0273342 00602634
020 0-448683 1-89041 0-179250 00141811
0-25 0-530826 2:22669 0-0227865 0-03288175
0-28310 0-58888 2:4499 0 0
1 01 0272679 1-33788
02 0-476800 2-046%4
025479 0-58888 2:4499
04 0910696 373215
06 1-49576 671188
0-8 2-59938 15-2028

terms of vz from (=12 = 0 of (4.29); then from (= 12> =0 of (4.28), <
{7V = 0 of (4.2)), (+1) = 0 of (4.22) we solve for vyjs, aye, 8172, 8; ,2, and so on. We shall give in

Section 7 the numerical values of these coefficients for nickel (e = 0-06) for U, =

the 1o and I approximations.

5. SOLUTION FOR <1

We assume momentarily that 4(® in (3.6) have constant prescribed values

A = aq, An — a(’); =1 = ap, Au: — Anu —

.=0

(a0 =0 of (429),

0-025, 0-25 in

(5.1)

Then, in the light of the initial conditions (3.11) and noting (3.8), we seek solution of (3.15) for

T £ 1 in the form
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E =14 bpit™ + bps mP2-+..., w =dp1 ™1 + dp2 72 4 ...,w"—}—dr/; L T S 59
Ue=cpr™r4cpzrP2+ ..., Up=faarv+ frara 4+ ..., =l 2+ ... 6-2)

Noting also (4.3) we stipulate
2<m<m<..,0<n<r<..,0<pp<..., O0<s1<... (583a,b,cd)

[The condition #; > 2 arises from the requirement % #(0) % co.] Introducing these expansions into
(3.15), the vanishing of the lowest » powers in (3.15) [+n*5~1 and +61-71 in (3.15¢), 7P1~1 and
781-12 in (3.157), 751 and =™t in (3.15g)] implies, respectively,

2ri—1=0, pr—3%=s51, s1=rn+n—1 (5.9)

[If r1 were zero, then the first line in (3.15¢) would furnish =51~ terms, the others would furnish
higher terms, and the coefficient of 7511 couid not be made to vanish. Thus we cannot admit 0 < r;
as a possibility, but must insist on the stricter relation (5.3b).]

From (5.3, 4) it now follows that

n=4% p—t=s=m—4%>3% (5.52)
#(0) = 0, %r(0) =0 (5.5b, c)
and from (4.3b) also that
#(0) =0 (5.5d)
The value of Ry has been left, so far, unspecified. If we choose
Ry=Ry, e Epn=% =1 (5.6a)
then by (4.3a) 5
Z0) =0 (5.6b)
This implies that
n > 2 (5.6¢)
On differentiating (3.150) we next find
Ur(0) =0, 51> 2 (5.7a)
and from (4.3b)
Z0)=0, m>4 (5.7b)

Similarly, one finds that all derivatives of Z, # vanish at = = 0. It follows that %, is a radius of
neutral equilibrium of the nucleus. Once it is of this size it cannot grow or shrink without external
disturbance. So we are prompted to choose for initial radius

R() > Rn, i.e. r.@n <@0 = 1 (5.8)
Condition (5.8) implies that in (5.2) we must set
n=2 (5.9a)
in order that we may satisfy (4.3a) at = — 0 by choosing
Uy Ro — Ry WUy
b2=@; 2@ %%(1 — Rn) (5.9b)

From (5.5a) we correspondingly obtain
pr—t=s8s=1% (5.10a)
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and from (4.3b)
ng =% (5.10b)

These considerations lead for = < 1 to the choice
RB=1+bs+brpr2+bsm*+ ..., w=dypr2+dir+ ..., '=d;/21'1/2+d;'r+
%F=ﬁ/21—3"2+f2-,-2+ eees Yo =cz7®+ cs2 2+ ..., [=lp?+hr+ ...

A=ao+ a2+ ..., A" =a) +ag ™%+ ..., ap+ay =1, aip+a;,=0,...
.11)

(We restrict ourselves to the second approximation.) The placement of (5.11) into (3.15) leads to
the equations

A A
T <% c2 — fae [11—/2 — 211/2]> + -2 <% cssz -+ (ce — f2) [Eﬁ — %11/2]
h
— f3p2 [f ( ]%/2) $h+ 38 11/2]> + 7 <Ca + (csi2 — f512) [— — 311/2]

L I
+ (2 = 12) [f (2 - 2*1) —3h + 151;,2] — farz [ ( il +o )
1/2

1/2 1/2

— 3lyz + 301 lyz — 7582, > +...=0 (5129

1 xz 12 5 A ] h
7 bea—fa2 e 2hp| D+ B2 fesp+ (2 —f2) it hy| = fop | |1 —
| 12

—3h+ 158, > +...=0 (512}

K ao p 11
ot gt D+ KR [ - o)
_ [feav+Sfopaue " esiz — forz
{ dijz } BARARELS [ao i +a d1/2]> + <K [ Ly

h B2 forzao + faare + fapar "
e

dase

+ (f2 a0 + fas2 ayje) (do )+()"()"+(ﬁ*l2ao) (d2 —%E) 4+ D>+ ...=0 (512p)
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fin2 laodtl [S7 2 = | 4010 + o et (lanty

k+D((k+5
[(k+1)(k+s) i+ EEDEED 4 k)é;zk] F LTV + Wave + aofolfore) ]
5
[szr duz = 1] O +ﬁ;/2~r<k+4”2<[aod [k + 1)k + 2k + 6) d dy

+ik+ DKk +2)(k+6)dy, + 3k + 1)(k + 6) dye

dsyo
dZ

12

+ thtk + Dk + 6)4711,3 + (1 — k)

k) - d3
d
- 2k2d—1*1,; —k(k+ 1) dl/Z] H LI LY + (a2 + aofolfar2) diol [(k + D (k + 6)d,

+%(k+1)(k+6)d1+(1——k)a; 2wk + 11717 + (o + ave 2> + a2 d¥,,
dira f3r2 S3r2

5 S — |+ Oy =0 G129)

Expressions (5.11) can be solution of (3.15) only when each {7%) in (5.12) vanishes. Because &2
is a fixed quantity (5.9b), and since the fi, bx coefficients are related by virtue of (5.11), (4.3) by

Sare = — 35 Uq by, fo=UuRnbs — 12[bs + (1 + €/6) bi] Ua,

forp = — &1 Yg by;2, fa=—20%gqbs, ... (3.13)

the coefficients by may be regarded as known quantities, and the equations (5.12%), (5.12p), (5.12% )
Jj = 0,’, 1; k = 0, m, 2m constitute six sets of equations in the six sets of unknowns cu, lu, fn, dn,

a,,d,.

From (5.125) we find, noting (5.9b, 16a) and Fig. 2 that the leading coefficient of the % series
fin=2ba [+ 22 (5.14a)
is a positive quantity. In the I, ITo approximations it has, by (5.16a, 19, 25) the value
I fae = 2be/{(v/2) + Bv/(2]4)} } (5.14b)
o:  fare = 2b2/ {3 + R/(2/)}
The vanishing of {7) in (5.129 1) implies

ca =0 (5.15)
hye = V/(X]2) (5.16a)
On taking the difference of the (73/2) expressions in (5.12% 1) we next obtain
5 1
34652 = "} Sarp A <0
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Fic. 2. The degree of inconsistency, #, of the ascending power series solution 7.

i.e. we find that, according to the present model, the nucleus center temperature begins to decrease
as the surface temperature starts to increase, in violation of the second law of thermodynamics.
For this reason we are prompted to assume that /(r) is a completely determined function

() =hp?, hp=+(X2), h=D5r=...=0 (5.16b)
This permits us to discard (5.12}), and we obtain from the relation (5.12%) that
C5/2 929 3 f2
2= T e AVQRA) .
Fop 10 o VEH) For (5.172)

where, in the light of (5.28, 29), cs/2 is seen to be a positive quantity. In the I, ITo approximations its
value is

. /2 g 1/3 4+ 3/5 ) 4
L =" troprrve V* 1
. €52 4 0-302512 + 3K/5 ’

The time dependence (5.16b) of /() leads to the surface gradient
aU/e8lg—0 = (2 + +/(2/4"7) (Ur — Uc) (5.18)

of the temperature (3.6b), which is consistent with the infinite gradient (3.8) at - 0, and also with
the expected behavior (— 0) at = > 1. Equations (3.6b), (5.16, 17) constitute a significant improve-
ment over former approaches that regarded the frozen nucleus as isothermal.

The equations (+1+%/2) = 0 of (5.12¢) create a greater dilemma. If we restrict ourselves to the first
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approximation, 4 =1, 4" =4"" = ... = 0, and correspondingly retain only (12%), then
{t) = 0 furnishes

ap = 1: d1/2= 1/\/2 (5.19)

But if we permit both 4 and A" terms to appear and, accordingly, retain the three equations
(128, . 2k), then it is found that the lead-off terms in these equations

(B> =0, (+k2y =0, (7l+kY =0 (5.20% "+ ")

respectively, are inconsistent ; they cannot be solved for dy/2, d,’,, a, . [The implication of this is: at
small times (3.15¢) cannot be solved in the form of (5.11), by restricting oneself to expansions in
half powers of ; logarithmic terms or perhaps other types of fractional powers should also be
included; this question has not been explored.]

One may define a measure of the inconsistency. We may vary d and d’’ in the three expressions
(5.20° '+ "y [we omit the subscript 3 of di2, d,’, in (5.21-27) for the sake of more convenient writing;
the ratios p°, p’, p'’ are not to be confused with the symbol p of density}:

ao . dll(z . l/dllz) . R -

Tay T de—1a@y T F
a  d"RQ 4 k2 -1/d") | o 1 1t
Pl ey o (5:21% %7
ap d"12EQ + k — 1/d"'?) _ .

Tay T dURRQ F k — 1]d%) =—° )

and determine d: @’ from the requirement
s(d,d"y =" ; P | — minimum (5.22)

We regard this choice d, d” (and the corresponding ratio do/d, = 5°) of d, d"’ (and ao/a;) as the
least inconsistent choice for the given k, and define the minimum degree of inconsistency as

S =Sd,d") =1 — ¢']p°lmin (5.23)
Clearly, in order that the ratio do/d, be positive, it is necessary that a?, d"” straddle the value 1/4/2,

The value greater than 1/4/2 will be labeled d, the value smaller than 1 /4/2 will be labeled d”, in
accordance with our convention in (3.6a) and elsewhere to let w (and thus d) be associated with the
dominating temperature term. One finds that.# is minimized by

. 54 bk + O+ k + k2ayz S+ bk~ O+ k+k2japz

— jrog __
d = warm ¢ 5@ T k)
3442 k k22 (5.24)

n k 4, ~

1 ibiddl vo__ 1 > i

d=t1—p+ g+ d 2(1 24+123+,,_)

and that
do do ., 3k, T4k . 11
= =l b T = Lk LIS

For k = 0 these relations specialize to

d=1,d" =%} d0=d, =45 =0 (5.25)
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In Fig. 2 we plot diys, d;/,, do/d; and.# vs k. It is seen that as k - O the inconsistency disappears.
This then indicates that, in contrast with the general case of Ik, an ascending power series solution
in 712, nevertheless, does exist for the special case of 1lo.

Once the solution (5.25) of the equation (7> = 0 of (5.12¢) is available, determination of the
higher coefficients d», d,,, a, of the 1y solution proceeds by the method of (4.15-17). Accordingly,
(5.12%) must be replaced by

7(°C1 + °Cy)> + ™% °Caa + °Cyp> + 2°Ca + °Cy> + ... =
('C1+ °Cilnd + 'C{ + °C{ Ind") + B2 'Cy2 + °CazInd + 'C,,
+ °Caplnd”y + ... =0
w"C1+'Cilnd + 3 °CiIn2d + "C} +'C] Ind" + 1° C; In2d")
+ 132"Cy2 + 'Cy2Ind + } °Csz In?d + ""Cy, + 'Cypp Ind”
+1°Cy,In2d"y + ... =

r (5.26% "'

o

1 ~N
°C1 = 00{2 d— ‘—1}, 'Cr=4%das, "Ci=0

d 1
°Cspz = ap {% di+5d2 4 ‘7;} + (ay2 + aofelfssz) {%d — ‘—1} r (5.27

d
‘Caz = ap {3 d+ 6d2 — 3—1 - 2} + (a2 +aof2/f3/z)2, "Cajz=ap {%d1+d2}

d3/2

d2
°Ce = {3 dy2 + 12 did - 643 + 22;} + (a1s2 + aofa/f32) {3 di+ 6d2+ g;}

S Sor2 1
+ (dl + a1/2ﬁ”2 +a Oﬁi/z) {3 d— 5’}

d} d d?
O ao 3o+ Wb 1088+ 55— 4 35—}

d
+ (a2 + ao f2/f3/2) {% d+7d%— 33 ~ 2} + (a1 + ayz f2 +a

fo
. a_d_
Co=au {3 dya +9dud + 50+ 3G — = 2G = d} - e+ aofulf) {1 + )

[ 5/2) d
® fare) 2

As was pointed out earlier, in connection with (5.20), the equations {+1) = 0 of (5.26) are in-
consistent; their solution (5.25) in the limit k¥ — 0 must be determined in the fashion of (5.21-24),
But once (5.25) is available and is introduced into the Cp, n = 3/2, the remammg equations
{rpy = 0, n 2= 3/2 are found to be consistent. The parameters ays di,dy;a), dsjs, dyy; . . . are
determined from (%2> = 0, (%) = 0,... as expressions in f2/f3/2, f5/2/f3/2,. . . ; the latter quantities
are then determined from (5.125). In thls fashion one finds
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L g S V2 fo_ 1 100+28 )
YT T9T B A’ far | V21009 - Ry A
497 76 f2 9 1 A2 fie
27 199 A1
for_ 405" 10K(‘/%/) V2 (405 TG K)ﬁ,z ~ 40572,
Sz 6/5 + K/x/,%f )

— [128 + 226102 + 176 In2] - [12 -+ 41n 2 — 21 In?2] fa/faye )

IIo: dy = 60 +911In2 4 40-5In22

fe

= — 2:5734689 — 0-0328557
Sa2

7 - —[22 + 65:51n2 4 38:25n2 2] + [12 + 28 In 2 + 15 In2 2] fa/fs2
1 60 - 911n 2 + 40-51n22 o

= — 0-60180744 + O- 27091582—f—2—

Sa2

r 1 .
— ayz = ay, = — 14819755 4 0-5324351 PLL 1008373 + 2K

s FoE e — s
Sa2® fae V21065632 + Kjr/ A

dsjz = 15167308 — 3-748830 /21 0.997599 /2 1 0.0886061 12"
Sare S fae
dofy = 2 o /504992 T2 0273480
f '3/‘) f3/_
fo /3 , S
— a1 = @ = 9042587 — 6-074998 > - 1522209 %2 -+ 07537575
Sar2 fie Sz
oz _ 27704046 + 99 R(+/#) — (1536703 + 1838478 ) folfy2 + 0197916 3132,
fae 1-175561 + R/ A )

The formula
s 75 . 19 14 (\/ ) Jsi2 — csp2
SR owye Dl ) /52 T 52
S 4 VA )+ 2 fape 2 fare

holds for both I and II; in fact, for all approximations.
For the special case

R=x4 =1
we obtain

I:  dip = 0707107, di = — 0473684, dz;» = — 0-080042, f3/2 = 0-707107b2,
Solfase = — 1:042052, fss2/fa;2 = 5-975951, cs5p2/f3/2 = 10-34210,
c3s2/fse = — 33:3287

(5.28)

(5.29)

(5.30)

(5.31)

(5.32a)
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o: ao=ag=14 - ayz=ay,=— 2030291, — a1 = a; = 22:556996,
dijg=1, dll;g =}, di = — 2539633, d;’X = — (-880804, ds;2 = 20-749393,

(5.32b)
d:;;z = 10:312385, fae = 0-686291 b, fa/fs;z = — 1-029826,
Soelfae = 7487628, cspa/fa;e = 10-33692, c3/fse = — 342851
and by (5.13)
by by WPy -+ 0736842 e B b
I: biypp=— 0‘0808122%, by D@, — (1 -+ 3) be, bgp = — 0268294%
(5.33a)
II(}. b’;jg IS e 00784333%, b*; == 12 %d, —_ (1 + g) bz, bg/z T e 0'326266 c?—:/}
(5.33b)

We could, if we wanted, adopt an approximate solution to the general II; problem at small times,
using the least incompatible values represented in Fig. 2, and then determining the rest of the o,
d.,, ay coefficients from the higher equations (=) = 0 in (5.12%). However, in the light of the avail-
ability of the accurately determined, simpler, and—by Fig. 1—much better Il solution, there is no
incentive to carry out such computations. All our work, henceforth, will be based on the I and 1l
solutions.

The closeness of the I and IIp expressions (5.32a, b) and (5.33a, b) of £, and b, suggests that the
ascending solutions I, IIp are probably very good representations of the true solution.

We list below the pertinent expressions also in the “simplified” I approximation when the
additional approximation is made that the nucleus is isothermal:

Uc = Up (5.34)

Then the inside equations (2.20), (3.157), (5.12;) are to be omitted; in (2.19), (3.155), (5.125) the K
terms (which represent the Ug effect) are to be omitted, and (5.32a), (5.33a) are to be replaced by

dye = 1/4/2, di= — 14, dap=11(/2)/24 ]

2= (2D ba, felfsre = — 12, forlfsre = 11/12 & (5.35)
P O S A PO PR | 2 L ’
T TR5 @y by 12%g ( T2) 7R PRTTRY A, J

6. CRITICAL RADII

We have introduced previously—in (2.13)—a critical radius, the nucleation radius %, which,
according to (5.8), delineates the initial nuclei sizes for which growth will or will not occur. Another
critical nucleus radius

Rp=1-+ b T§+b7/2 'rz/z—-}—bz; 7‘3* 6.1)

characterizes the growing nucleus at the instant r, at which the inflow velocity (for « > 0, outflow
velocity for ¢ < 0) is a maximum. By (2.7) the inflow velocity is largest at the freezing front, where
its value

— up = R (6.2a)



222 G. HORVAY

reaches a maximum at time r, for which

.. 35
.9?==2bz+74—b7/21'3/2+12b472+§4?1'5/2+...=0 {6.2b)
Since according to (5.9b, 13, 14)
8 by
= b {K\/(Z/J{) + —1- + x',:z + .. } Uq = md2 Yy (6.3a)
(V2 + Rv@x), 1
m¥t= {3 (6.3b)

5+ Rv@AH), o

the solution of (6.2b) leads to

4/35 . 2/3 )
Ty = | — Z—- 2b2 4 12 by 72 + bg/z LA )j’ =m YU (6.4a)
R ba 2 63 by;2 7312 273
m { + 65— + < 8 By + ...
by 723
m [I +3 b Tﬁ] , for 6 bq72/by = smallest term (6.4b)
B b4 63 bz .12 63 |boyz
[1 -+ 6 72 4 — 16 By 5’2] , for 8|5 l 52 = smallest term  (6.4c)

The (6.4b) expression of m’ is based on the observation that the smallest term in the { }2/3 expression
1s, in most of our range of interest, the 6b47,/be term; and in a semiconvergent expansion it is found
most expeditious (¢f. Lanczos, p. 5 of reference [15]) to carry the expansion up to the term preceding
the smallest term, and add on the smallest term with half weight. The expression m#%Z2*® is a first
estimate for =,; it may be improved by multiplying this by the correction factor { }?/3 into which
the foregoing first estimate is first inserted. Roughly, we can say, when K =X = 1, that

7o = 2" U3Y? (2' = a trifle larger than 2)} (6.4d)

Further critical radii Zas [or ., ; see (6.7, 8)] and Z. relate to the condition of maximum negative
pressure and zero pressure at the front, respectively. The pressure in the liquid may be written, by
(2.8b, 22), in the form

eggs 7
At the front £ = &, using (5.11), this becomes
Jfop = fro — 2¢€ b2 [1 +~§121273/2 {(5 + €) bs + 62—:}72 + .. ] (6.5b)

Calculated curves for Z, 2, %, in the case of nickel, are shown in Figs. 4-9. 2 starts out with a
large positive va'ue at + = 0, passes through a zero at 7,; then, depending on the imposed under-
cooling Uy, it may (or may not) fluctuate about 0; finally it approaches zero through negative values.

t Quite a bit larger than 2 for large undercoolings.
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Ensuing possibilities for ps are sketched, for the case e > 0 (to which we will, henceforth, restrict
ourselves), in Fig. 3. Curve a illustrates the case of exceedingly large undercooling, when in (6.5a)

Q@+ €)% = AQ) [Fo = A (rv)} (6.62)
In this case the tension at the front, — pp, increases up to — pm, at tn, shortly before ¢y, and then
it decays slowly to — po = — 1 atm, passing through the zero value at some large time ., Curve b

illustrates that case of large undercooling where the maximum, — pm, of — pr near t, does not
quite reach the initial maximum — par. [Subscripts m and M are used to refer to the maximum
tension condition in accordance with (6.6a), (6.6b); since T, nearly coincides with =, the simpler
estimates

T X o, — fm = — foo = — fho + 26(1 + /) 6.7)
may be adopted for this case.] When
@ + 2% < HO) (6.6b)
then the initial tension is the maximum. In this case, therefore
1+ ¢ Ro— Ry R2gXN Ty — T
P Ry & T¢ —f

In contrast to (6.7), this result is true, as are also (6.14) and (5.9b), in all approximations (I, I1, etc.)!!
Conditions (6.6a, b) may be stated also in the form

™™ =0, —-/zszebz — fhep = (6.8)

7 bope by ]
1 $bar2 |1 32 44— 72 1
(+€/)27”[+2b2 ATt ]2‘* (6.9, b)
(1 + €/dbari] 1 <3
p:sr—n% (:, f i la e T,
7 : b & — b,
7
\/\
¢
| — [
\d/\\ iy L eg
TN — .|
F/ B b,
o
atm

F1G. 3. Qualitative behavior of the front pressure with time for various degrees of undercooling:
(Tf - Tu))a > (Tf - Too)b > (Tf - Too)c > (Tf - Tco)d-
HM.—~P
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Clearly, for € > 0, the maximum negative pressure always occurs at the front, ¢/% = 1. [For
e < 0, in the case (6.6a), the maximum positive pressure may occur slightly ahead of the front.
Formulas (6.7, 8) also hold for e < 0.] It is noted, by (6.8b), (2.16a), that /s is negative only when

e cI® R
In other words, there is a least initial radius, R}, which must be exceeded (at a given undercooling)
in order that pa be negative. Curve ¢ in Fig. 3 illustrates the case of moderate undercooling where
Ry > Rj; it is noted that for this case 7, the time at which the front pressure crosses zero, is barely
larger than 7,. Curve ¢’ illustrates the case where Z has several fluctuations about zero. [For quanti-
tative illustrations, see Figs 8(a), (c) and Fig. 9(c).]

Depending on the location £ in the liquid, the zero pressure condition for ¢ > 0 is reached at
various times (it is never reached for € < 0); it is reached last at the front. Curve din Fig. 3 illustrates
the case of small undercooling, where the condition (6.10) is disobeyed; here there is no ..

From the ascending series expression (6.5b) we find that

/ b 2/3
s | 74 2
T¢ = MU [1 Yebs + {(5 -+ €)bs + 6 bz} 24 .. ] (6.11a)
is the time at which the front pressure passes through zero. The corresponding radius is
Re=1+bs72+ by 72+ batt+ ... (6.11b)

This formula applies to cases of moderate undercooling, like Fig. 3 curve ¢ or Fig. 9(b), curve
Ty — Tw = 17-5°; for large undercooling the descending series formula (4.1) of # must be used.
It leads to the expression for fp:

PF = o — fL T [l + ; — B2 — 2+ 9fr T + ] (6.12)
From this, one obtains
— (1 + €/2)B2
Te T jwle T B T i + @+ OB1 T P+ L] (6.13a)
o (1 + €/2)eB% [ N 9Bt 1
T 1+ B LBy T 2 (1 + €f2)efeffie (6.13b, ¢)
Ro = 20 72 [1 + Pryp 77V + 100] (6.13d)

Formula (6.13c) was stated previously, in a slightly different form, in equation (50b) of reference [1].
The extent £u, at time 7 = 0, of the negative pressure region is given by

rafRo = éu = B O)frco = 2ebslfpr = | — fortfio (6.14)
At the interface # the liquid pressure £p discontinuously increases to the solid pressure value

d'

2,
fis = fr + frtog + proe. =pr + 5 B +2 5 (6.153)
o' = o'Rog/r2y (6.15b)

At time = 0 this is
#5(0) = foar + 24 (6.16a)
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and may be a very large negative quantity, approaching (6.8b) in magnitud‘e if fonr domina‘tes;
alternately it may be a very large positive quantity if 2o’ dominates; at time 7, it will have acquired
the value

Lofoe N e L > {A 16hY
7Sy} — peo v jeey Whiloy

[¢f. (6.7b)], which is usually positive. Then, with passage of time, /s subsides t0 fc.
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APPENDIX. CAHN’S FORMULA FOR THE DEPRESSION OF FREEZING TEMPERATURE DUE TO
PRESSURE
At the melting point, Ty (corresponding to ambient pressure po), the chemical potentials .z and

s of liquid and solid phases must equal, and so must pz + duz and ps + dus at Tr = Ty + dT.
But

L dur dpr dps
dﬂL“:ﬁdT‘*'gp—dP:—SLdT'l-—y-, d.us=°-SsdT+-f,— (AD)
(S == entropy). It follows that
d d
Sz — Sg) dT = 2= Tflf (A2a)
Y
from which
TS (pF — P ps—p
TF—sz«—..dT=7£( == °°) (A2b)

i.e. (2.5) holds.
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Part II. Growth of the Nickel Nucleus
7. INTEGRATION OF THE GOVERNING EQUATIONS

In this section we apply the analysis of Part I to the nickel nucleus. We shail use the property
values (g stands for gram weight), cf, (54) of reference [1}:

e =006, Ty=1455°C =1728°K, pwo = 1033 g/cm? =1 atm

K=k = 0165 cal/cm-sec-C°, I'= 106y = 8-92 g/cm3

C = 0-105 cal/g-C°, ¢ = 0-106 cal/g-C°, « = k/yc = 0-185 cm?/sec } (7.1a)

A= T4 cal/g, N’ = 3-16 X 108 g.cm/g, o = 0-360 g-cm/cm? (= 255 erg/cm?)

» = Boltzmann’s constant = 1-41 x 10-19 g.cm/d2g (= 1-38 x 10-16 erg/deg) |
By (2.16¢)

R=o =1 (7.1b)

[More frankly stated, the somewhat uncertain values of k, ¢ near Ty were so selected that (7.1b)
hold.] As undercooling temperature we first select

Tr — T = 17-5 degC (7.2a)

Accordingly, by (2.16b)
0-106 x 1728  17'5
=T C 118
is the dimensionless undercooling. The nucleation radius (2.13) is

2 X026 x 247 1 4-55_)(_10‘8

Un = 2:47 x 0-01013 = 0-025 (7.2b)

=3 —r PREE— —6
R, §97 % 316 % 108 U/, v. 1-82 x 106 cm (7.2¢)
For initial nucleus radius we choose
Ry = 218R, = 2-293 x 10-%cm, £, = Ru/Ro = 0-794 (7.2d)
This exceeds the least Ry value for which tension may arise [see (6.10)],
. € po cTEA]L 0-06 x 1033 24711 0
Ry = [1 T U] BT |l T gerx3Te w100 X Gos) Re = 1000217Ra (7.20)

by a considerable margin.
The density parameter (2.16b) in the temperature is

0-062 0-185 )2 1

Us = 0:0176 (1.2

= 106 2393 % 10-6) * 981 x 316 x 10¢

and the scale factors for distance, time, velocity, acceleration, temperature, and pressure are

r/é¢ = Ro =229 X 10-8cm, t/r = R/x = 2-83 X 10~ sec

X 2:47 X (

R/% = x/Ro = 808 x 104cm/s, R/% = «?/R3 = 2:86 X 1015 cm/s? (7.3)
(T — Tw)/U = Mc = 698°C, plp = (x/Ro)2y/g = 560 X 107 gfem? = 5-42 x 10%atm
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Note that temperatures U and % are related [see (3.14)] by

U= 106 (#u = 0-0235849, %z = 0-01660377) (7.4a)
and that the dimensionless atmospheric pressure is
fro = 1033/5:60 x 107 = 1-84 x 105 (7.4b)
while the dimensionless surface tension «” of formula (6.15b) is given by
J 0260 =203 x 10-8 (7:4c)

= 560 x 107 x 2293 x 10-9

One must keep in mind an important restriction on our analysis: the phenomena described by a
continuum analysis must not involve such small quantities (in space, time, mass) that quantum
phenomena would also come into play. The distance and time scales

Ry=123 X 108 cm, Ri/k =2-8 X 107115

are indeed much larger than the radius 0-5 X 10—8 cm of the first Bohr orbit, or the travel time
1016 5 of an electron in the first Bohr orbit. When we switch, in (7.7), to an undercooling of 175°C
(the largest undercooling we shall be concerned with), Ro and R/« will be replaced by 2-3 X 10-7cm
and 2-8 x 10-13 5; these quantities are still a safe margin away from the atomic scale.

After these preliminaries we may proceed to the calculation of the parameters by etc., and i etc.,
of the ascending (5.11) and descending (4.1) solutions. We find, by (5.9b), that

U 0-025
L Ilo: b2=1% 7'; (1—-Z)=1% m X 0:206 = 0-1463068 (7.5a, 6a)

Hence, by (5.19, 25)
I ao=1, dip=1/4/2; Ilo: ao=a, =% dip=1, dy,=1% (7.5b, 6b)
and by (5.32, 33)
I: brjg = — 0-712090, b4 = 0-533198, bg;p = — 2-36412
dy = — 0-473684, dz2 = — 0-080042

faiz = 01034545, f» = — 0-1078050, f5/2 = 0-618239 7.5
csj2 = 10069937, c¢3 = — 3-44800 )

Io:  bys = — 0691128, by = 0-511109, bgjp = — 2:87494
— ayp = ajj, = — 2030291, — a; = a4, = 22-55700
di = — 2:539633, dy = 20-74939, d; = — 0-880804, dj;, = 10-31238 - (7.60
fare = 0-1004090, f3 = — 0-103404, fs/2 = 0-751825
cs2 = 1103792, c3 = — 3-44253 ]

are the leading coeflicients in the ascending expansions of #, 4, A”, w, w”', #r, % ¢ in the I and I,
approximations. As in Table 1, and noting (5.5, 9), we next determine the basic parameters

Io: ag =1, Bo= 008725369, R = 0-6455999, 8 = B/ = 0-1351513,
vo = yo = 00235849 (7.5d)
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Mo:  ap=1—a, = 06032083, Bw = 01212497, Q = 0-5321140, = 0-2280827
w0 = B/ = 02278641, & = wdp = 0-05197186, yo = vo = 0-0235849 (7.6d)

for the asymptotic expansions (4.1). This takes care of (4.20) or, equivalently, of the (712) =0
equations of (4.18). The (7% = 0 equation of (4.18°) in case of I, and of equations (4.18° ") in
case of Iy, in conjunction with the {7~12) = 0 equations of (4.2%, 2 g) and the relations (4.4) then lead to

I: Biz = — 6438463, 812 = — 4-514249, wvy2 = — 0-1073101, y12 = — 0-1075819 (7.5¢)
Io:  Biz = 306502, —aye=a;,= — 648562, 813 = — 68-7592,
82 = — 106:705, vz = — 0-0772225, y1/2 = — 00775994 } (7.60)
For Ty — Tw = 175 degC undercooling, Ro = 2V/3R,, one finds similarly the basic parameters
n=182 X 10-7cm, Ug=176, Ry =0794, %, = 0235849, Uz—= 1660377
by = 001463068, fiw = 1-84 X 107, &' =203 x 10~ } :
and the scale factors
Rj¢ = Ro=2293 X 10-7cm, t/r =283 x 107185, R/%# = 808 x 105cm/s,
R|% = 286 x 1018 cm/s?, (T — Tw)/U = 698 degC, plpo = 542 X 108 atm } (7.7
The coefficients (7.5b, 6b) remain unchanged. The other coefficients become
I: brje = — 0000712090, b4 = 0-000462378, bgj2 = — 0-00236412,
dy = — 0:473684, d3;z = — 0-080042, f3;2 = 0-01034545, f> = — 0-01078050, (7.8a)
Sz = 0-06182390, c5/2 = 0-1069937, ¢35 = — 0-344800,
ag = 1, B = 0-5087406, 2 = 2-194768, 5 = 0-2317970, vo = yo = 0~2358490,} (7.8b)
Bijz = — 1:326735, 812 = — 0722970, vij2 = — 01840467, y1/3 = — 0-1988997

IMo: b7z = — 0000691128, by = 0-000440290, by = — 0-00287494,
— aiz = ay, = 2030291, — a1 = a; = 22:55700, dy = — 2539633, 7
dsjz = 20-74939, d,’ = — 0-880804, d,, = 10-31238, fy5 = 0-01004090, (7.92)

fo= — 0-0103404, fs2 = 0-0751825, cs2 = 0103792, c3 = — 0-344253 |

1 — a = ag = 0:996257039, Pw = 0-5163892, @ = 2:190297, w = 0-1035666, )
w = 02357622, 8. = 0:02441709, o = vo = 02358490, Byj2 = — 1-05641

— ayp = )y = 0-136379, 812 = — 0390083, 8, = 23-0660,

vijg = — 0-181321, yy2 = — 0-196368

For Z, = 2-1/3 and U, = 0-25, 0-025 we plot in Figs. 4 and 5, by method Ily, and in Figs. 6, 7
and 8 by method I, the variation with time + of the auxiliary parameters 4, w, w'’ and of the principal
variables of the problem, # — 1, %, Z, U r, % ¢. For small times (v = 10-6 to = ~ 0-1) the solution
ascending in 712 was used (coefficient of last retained term, e.g. b7;2 or b4, is marked on the curves
in Figs. 4 and 5), for large times (» = 108 to = ~ 102) the solution descending in 712 was used
(coefficient of last retained term, e.g. Bi/2, is marked on the curves in Figs. 4 and 5).

The intervening portion must be bridged by numerical integration. However, as the dimensional
summary figure of the four calculations, Fig. 9 indicates, the I and Ilp solutions are indistinguish-
able, at U, = 0-25, in their small time and large time behaviors (presumably also in-between);

(7.9b)
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F1G. 4. Ascending and descending power series solutions (in -1/2), terminated with the term that labels the curve.
The asymptotic behavior is marked on the curves. Nickel, for &, = 0794, Ty — T, = 175 degC, method Il
solution,

while at Uy == 0-025, I and I, are indistinguishable in their small time behavior, and not importantly
different in their large time behavior. For this reason a bridging of the small and large time regimes
was undertaken only for the I calculations; even these calculations, programmed for an IBM 7094
computer, constituted a considerable financial effort. The equations (3.17a, b), (4.3a), (3.159,
159, (155) may be restated, for the case (7.1b), in the somewhat more convenient notation

z2=%, u=%Ur, v=%U (7.10)
as follows:
1 1 R—Ry) 5+ ezt
I"‘Z;v '9?“‘23 Z——m{*“‘f*‘%ﬂ ] }“‘ 3 @ (7.113,1),0)
\ (%2 4 2Rw + 2wDAZ|w (92 -+ 29w + 2whw
2 2 m
Wi [gg AR+ OV A e T ] S+ aw

z 1 1 Az — R, 34 € v
X[u(;—;ga)+%(u~% % ")+ =2+ gt 30— w

2A4+1z 142 @I+ DG+ 1 _ &
x{ ; 5?*—5‘,/_*_14-( 12?4(32 )}]+u[~z{a@2+2@w+2wg}+g}} (7.11d)
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FiG. 5. Ascending and descending power series solutions (in ~1/2), terminated with the term that labels the curve.
The asymptotic behavior is marked on the curves. Nickel, for #, = 0794, Ty — T, == 17-5 degC, method s
solution.

T eSS Ry

SEUI+Zw|“\w 4B~ w2 T apy %
24 14 &#iw Y 5141
35 rrae v ”){gg FDGIFD T T j (7.11e)
Q@ + Ul + Rjwu =Rz + 2 + 1D (7.11f)

The integration was carried out by means of the FACE program developed by N. S. Mathias and
D. N. Ewart, This is a very crude but convenient integration scheme devised for very large equation
systems: the integration is based on the slopes of the pertinent functions at the beginning of the
integration step (““Euler’s method”); no iterations are involved. As initial values the data furnished
by the power series representation at = = 10-% were used. The integration step was 10-? from
7 == 10-% to 10-5, 108 from 10-5 to 10~4, 10-7 in the next decade, and so on. We shall briefly refer
to this as a 0-001 step computation (0-001 = 10-9/10-8 = 10-8/10-° = ...). Thus, 80 000 integra-
tion steps were performed between = = 10-¢ and 102 in each of the computations 4, C, D, E, F.
In computation B, 0-01 steps were used. F refers to the computation at Uy = 025; 4, B, C, D, E
to the computations at U, = 0-025. In computation C, we used equations (7.11}) of method I up
to 7 = 0-3691 (here % ¢ catches up with %r); from here on we continued with simplified method I
computations. The latter expression is used to refer to the assumption (5.34) of isothermal nucleus.
Computations D, E refer to cases where simplified equations were used right from the beginning.
In computations 4, B, C, D, F we used initial values accurate to about six significant digits (except
for I which was chosen with eight-digit accuracy); the critical item was % ¢ of which only two coeffi-
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FiG. 6. In the range = 10-% to 10+3, a numerically integrated solution connects ascending and descending power
series expansions. The asymptotic behavior is marked on the curves. Nickel, for #, = 0794, Ty — T,, = 175 degC,
method 1 solution.

cients, ¢s/2, cs were available. In computation E we repeated D, using initial values accurate to eight
digits, determined in accordance with (5.35). In Table 2 we compare values furnished by 4, B, C,
D, E at{ r = 10-6, 0-1, 10 and 30-01 (B is given at 30-1; results at 30-0 were not printed out). It is
noted that the /equation (7.11a) is independent of all others, and its solution is / = +/(7/2). Thus, the
deviation of the calculated / (0-1) = (4/5)/10 ~ 0-22360609, / (10) = (4/5) ~ 2-:2360562 by 4, D, E,
F(0-22366221, 2-2366221 by B) from the rigorous eight-digit value (1/5) = 2-2360680 is an indication
of the discretization and roundoff errors accumulated during the integration process: the last three
retained digits of the independently determined function I(7) (the last four digits for calculation B)
are meaningless. In fact, we may ascribe the error in /(7) as largely due to discretization: since /(+)
is monotonically increasing, its last digit is discarded after every 20 000 integrations (because the
decimal point moves to the right): this eliminates a major share of the roundoff error. This conclusion
is supported by the observation that a change from the 0-01 step B scheme to the 0-001 step 4 scheme
decreases the error by a factor of about 10. Thus we must assume that the interrelated quantities
Z, U are also in error in their last two or three digits at the time 7, is reached. Past 7, # and %7
no longer increase monotonically, and thus we may expect a precipitous increase in their roundoff
error.

Figure 6 is based on computation Fin the interval - = 106 to 103, Figure 7 is based on computa-
tion A4 to 7 = 0-3691 and on D from thereon; in Fig. 8 the computations 4 and E are compared.

} The entries at 7 = 10~¢ are the input values.
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Fic. 7. In the range r = 1078 to r = 30, a numerically integrated solution continues the ascending power series

solution. The descending power series solution is also shown. Nickel, for #, = 0794, T; — T, = 17-5 degC;

method I solution to = = 03691 (crossing of % ¢ and %r), and simplified method I (assumption of isothermal
nucleus) from thereon.

The breakdown of the computations around ~ = 40 is due to the fact that in the expression (7.11c)
of the acceleration

the last three digits, as explained above, are meaningless, while the first five significant digits cancel
out in the subtraction. We illustrate this point by writing the above expression term by term for 4,
E, F, at r = 3001, and for F also at = 1000:

A: 043245288 — 0-43241861 — 0-00003960 = — 0-00000533
E: 0-42487816 — (42485318 — 0-00003438 = — 0-00000940
F: 010745757 — 0-09270495 — 0-01640874 = — 0-00165612

F:  0-13831634 — 0-13789611 — 0-00067059 = — 0-00025036

Thus, at Uy = 0-25, to which F pertains, we have enough retained accuracy to continue the
calculations past 7 = 30 up to = = 1000,} at U, = 0-025 all eight digits lose significance by the time

'%' %u(l ....‘@”) Uu 5+522

(7.13)

1 By the time we reach + = 103 only the first two retained digits remain significant: & — 1, B, R, Up are 292,
00163, — 0-09828, 0-229 by forward numerical integration, 29-8, 0-0161, — 0-04805, 0-230 by two-term descending
power series formula.
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Fig. 8. Comparison of numerically integrated method I (curve 4) and simplified method I (curve E; assumption

of isothermal nucleus) solutions for the case of nickel, %, = 0-794, Ty — T,

Table 2. Comparison of numerical integrations

= 17-5 degC undercooling.

-

+  Method Z—1 R @ w Ur Uc

10-¢ A,B,D 0-01214630680 0-0529261360 0-29261360 0-0370663310 0-01410664890
B 0-01214630682 00529261363 0-29261362 0-0370669743

101 A 0-02126694 0-0226028 0-136364 0:190011 0:02259370 0-02120870
B 0-02126800 0-0226094 0-136270 0:190056 0-02259526 0-02120978
D 002105275 0-0164497 0-0379543 0-257511 0-02423597
E 0-02105276 0-0164497 0-0379542 0-257511 0-02423597

10 A 0-0596445 0-02440567 — 0-04683999 1-35005 0-02591294 0-02590172
B 0-0596645 0-02440518 — 0-04683883 1-35028 0-02591327 0:02590206
C 0-0597611 0-02427862 — 0-04763372 1-38247 0-02591507
D 0-0555399 0-02422323 — 0-04737602 1-38386 0-02584437
E 0-0555399 0-02422323 — 0-04737603 1-38386 0:02584437

30-01 A 0-141538 002395638 -— 0-05467874 " 1-82470 0-02717979 0-02716887
C 0-137920 0-02372120 — 0-05880931 191545 002712778
D 0-132852 0-02368642 — 0-05831342 191356 0-02705416
E 0132852 0-02368642 — 005831649 191356 0-02705417

30-1 B — 41 x 1023 — 2-8 x 1022 2.1 x 1014 — 33 x 107 14 x 1022 39 x 102¢
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7 == 30 is reached. To go beyond, it would be necessary to use (from the beginning) a more accurate
integration scheme (e.g. modified Adams method, or the like), in conjunction with double precision,
which allows one to carry 16 significant digits, instead of eight in the integrations. In retrospect, a
more accurate integration scheme would have been desirable. However, since—for the task on hand—
our computed curves gave valid results in the most important = region, the vicinity of 7, and slightly
beyond, we did not undertake the task of repeating the calculations by such a much more expensive
computational scheme.

From Fig. 8 it is noted that, past ry, %r has a slight dip (because of the dynamic effect of large
deceleration on freezing temperature); but when the surface temperature %y declines, heat may
flow out from the hotter nucleus; thus % ¢ may exceed % over a small time interval. (The same is
true also at Uy = 0-25; but here the time interval of heat outflow is so small that no dip is seen in
the plotted curve of #r, nor can there be distinguished any crossover by #¢.) The fluctuation in

%, Fig. 8(b), brings forth a corresponding fluctuation of # about 0 [Fig. 8(a)]; this fluctuation does
not arise when the simplified method I is used.

Although Table 2 reveals a difference between entries according to 4 and according to B, the
differences are too small to show up on the graph paper; the error due to the larger integration step
manifests itself mainly in an earlier breakdown of the calculations. (See the meaningless entries in
Table 2 that were printed out for B at + = 30-1).f Comparison of the entries for D and E indicates
that the inaccuracy past the sixth digit of the initial data is of minor importance compared to step
size and roundoff errors.

One might have endeavored to avoid the difficulty of canceling significant digits in (7.12) by back-
ward integration of equations (7.11), say from = = 108, using the descending power series expres-
sions for initial value determination. This was tried, but it was found that the cancellation of sig-
nificant digits in (7.12) is even more serious in this case. o

On the basis of Figs. 4-8 we plot in Fig. 9, vs dimensional 7, the dimensional curves R, R, R,
Tp — Tw, T¢c — Teo, po — pr, as well as an effective 8, using the alternate definitions

Bott = (£ — 1)/2(y/7) = (R — Ro)[2v/xt, Bry = R(+/7) = Ry/(1]) (7.14)

Thin long-dashed lines are used to indicate our guess for the missing connections between the I
computations and the descending power series representations in the U, = 0-025 case.

In (7.15) below we verify for the case U, = 0-025 and in (7.16), (7.17) for the case U, = 0-25,
that the approximate formulas of section 6, based on chopped-off ascending or descending power series
Solutions in 712, provide acceptable agreement with the values read off the numerically integrated
curves of Figs. 4-9. This is the most important conclusion drawn from these figures; it obviates the
necessity of investigating other cases by means of numerical integration, but assures us that the
results based on the section 6 formulas and the corresponding Fig. 10 provide quantitatively accept-
able estimates.

By formulas (6.8), (7.5) the tension maximum at the front, at time » = 0, is

L ot — fisr = — fo + 2€b2 = — 1-84 X 1075 + 0-01756 = 0-01754, — py = 951 atm (7.15a)
The corresponding pressure on the solid phase [see (6.16a)] is
L Ho: fs(0) = fim + 26’ = — 0-01754 + 0-00406 = — 0-01348, ps(0) = — 730 atm (7.15b)
and the extent at this instant of the negative pressure region in the liquid [see (6.14)] is
L Ilo: .rar/Ro == ém = 1 — pM/pew = 1 -+ 951 = 952 (7.15¢)

1 The large powers of 10 that multiply the various entries may be attributed to the fact that the computer cannot
carry numbers larger than 1038, and once this is reached for any one variable, everything gets garbled.



236 G. HORVAY

oL 175 7oirs o 0015 Bl P I 1) 0115 Flg s
S N R LA DA T E R N LN A I B 7 B B
i .Qy-t + _ — Rem/s a
= —=—Fp,tm -4 = —— L. -

' ———,
b _-)_?!.4 42 - AN
R
RY ] =

1

|

i

L cernrenn L -

TR : ;

- P

T T I . I MPPL N

R )
'0‘3 1 R’@! '0_' 1078
;;:{" / LU DV L / R 1
PRARE | vRIR, 2g23
rA 17 - » B

Ve
1 VaE ey
7 , 7
i 0 .

e : . LA 2 :

A "l 4

z ANy |
o 1073 0% Lol // 7 / 10

/ ¥ ] / Rif
-."'.. ?n* : ~
) ;;"' Ny N RIR,
N
= [ \[ | Fa <101 for Ap>Ap

L ekl

o3

i 2

-\'-' - 110001~ - RS 7, 1
A 7 - m LA
L' <& L2
Rl - 7 ]

"-,‘k I a’ A ] =

L1 \(‘*.H;o*‘ 0% ui ool o e

0-001 0-01 U o4 02 04 i o001 o0t Uu Gt 02 04 f
i

(s} ®)

Fic. 10. Dependence on undercooling for, the case of nickel, of R4, Ro*, R, R, Ry, to, tsy Dot Pars Doy P0) Pelts),
as determined by the formulas of section 6.

In these initial values no approximations are involved.
Maximum velocity is reached, by (6.4b), at time

I 7 =01300 [1 + 10:973P8 = 0-150, ¢, = 4-26 X 10~1%g (7.15d)
Ho: 7y =01324[1 + 10-5228 = 0-153, 7, = 4-34 x 10135 )

whereas curve 4 of Fig. 8(a) shows
I: 7p=018 (7.154")

Velocity maximum and corresponding radius [see (6.1)] are}
. 7 .
I: Ry = 029267, [l — 8:52732 - —-iz—? -r?,] == 0-0440 x 0-585 = 0-0257, Ry = 2080 cm/s

IIoi .@v o 02926‘7"0 {1 — 8'3073/2 -+ zg—o 1"3] = (-0448 x 0-587 = 0'0263, R-v = 2120 Cnﬂs (7 153)

1 As in (6.4c) we append factor # to the last (smallest) term in the bracket.
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Fig. 10 (continued)
It #y=1+401463 72 {1 — 487782 4 3-‘—,;-—‘4 «;-gJ =
7 (7.15¢)
100033 xX 0758 = 1-0025, Ry =230 x 10~6cm
349
Ho: Zp=1+40146377 |1 — 472732 = T =
1 00034 x 0758 = 10026, Ry =2-30 x 10~8cm
Figure 8(2) shows
It Ry=28x 1072, R,=10030 (7.15¢)
By time 7, the front tension has dropped, according to (6.7b), to
I —fp= — 184 X 105 4 0-122 X 0-0257% = (— 1-84 - 8-08) x 10~5,
po=1-—438 = — 338 atm
(7.150)

IMo: — fiy = — 1:84 X 10-5 - 0-122 X 0-0263% — (— 1-84 + 8-40) x 10-5,

Po=1=—456 = — 356 atm



238 G. HORVAY

as compared with

I: py=—4atm (7.15£")
in Fig. 9(c).} The pressure on the frozen nucleus has risen by this time [see (6.16b)] to
0-00406
. - 1. 5 _ Q- . 2 — -5
I fs(re) = 1-84 X 10 012 x 002572 + 10075 2 + 396) x 10

psty) = 1 4215 =2l6atm  »(7.15g)

0-00
To: fis(rs) = 184 X 1075 — 0-12 x 0-02632 +- sz.? = (2 + 396) x 10-5 J

As the nucleus grows the liquid tension at the front continues to decline (and the surrounding
negative pressure region continues to contract), while the positive pressure on the solid nucleus also
relaxes. The front pressure passes through the zero value, by (6.11), at the time and radius

2/3 b

I 7= 01300 [1 — 0-001 + %223 75} = 0152, ¢ =431 x 10125

217 23
Mo: 7o = 01324 [1 — 0001 + = 73] = 0155, =440 x 10125 L (7.15h)

1: %.=10025, R.=230x 10~8cm
Mo: #.~= 10026, R;=230x10"%cm

J

i.e. 7¢ practically coincides with 7,: we have the case of Fig. 3 curve ¢ on hand. The curve in Fig. 9(c)
[or rather, the data on which the curve is based] shows

I: 7¢= 0182, #, = 1003 (7.15h")

Corresponding results for U, = 0-25 are [the units for (7.16b, 17b) are listed in (7.7b)], by
formulas I:

— iy = 0001756, fis(0) = — 000135, 7y =75, Ry = 0-110, R, = 1-41

L (7.16a)
~ fio = 000148, 5= — 000117, =874 x 104 % = 300 j

— pu = 9520, ps(0) = —7310, 1,=21x 10712 Ry= 89000, R,=3-23 x 1077 (7.16b)
— pp = 8000, ps(ty) = — 6300, # =25 x 10-8, R,= 69 x 105

and by formulas IIp:

— i = 0001756, fes(0) = — 0-00135, 7, =80, By = 0117, Ry = 1-47 (7.172)
——-ﬁv = 0‘00167’ ﬁS(TQ)) = — 0'00136, Te =~ 8'95 X 104, '%C = 308

— P =9520, ps(0)=—7310, t,=2-3x 10-12, R,=94000, R,= 338 x 10~7 (7.17b)
— po= 9040, ps(ty) = — 7400, f, =25 x 108, R, —7-1 x 10-5

*+ This really is not visible from Fig. 9(c), but is provided by the computed data from which Fig. 9(c) was plotted.
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as compared with the values in Figs. 6 and 9:

I: Ty = 188, By = 00844, By = 2:27, t. = 2-4 X 108, R, = 66 X 10-5 (7.16")

Two changes are noted in calculations (7.16), (7.17), as compared with the calculations leading
to (7.15). One is a computational change. The iterative formula (6.4c) must now be used in a re-
interpreted fashion. On calculating method I estimates of 7, by iteration in accordance with (6.4b),
one obtains successively 7o = 2:80, 71 = 4-00, 72 = 5-18, 73 = 652, 74 = 8-22, 75 = 10-52; with
ratios my/ta—1 = 143, 1:30, 1-260, 1-260, 1-292. After a certain convergence the ratios diverge again.
The least inconsistent ratio, 1-25, is obtained when = = 7-5. This we now adopt as the appropriate
estimate of 7,. [It may be added that when the ratios do converge to 1, as in (7.15d), but poorly,
then it is most expeditious to plot =, vs 1/n and extrapolate to 1/n = 0.]

The second change is more fundamental. The pressure variation is now represented by curve b
of Fig. 3, and =, %, are calculated in accordance with (6.13):

103 X 0-5092
. - _ <. - 9. -8
B o= pgscioie T Toeem = 874 X 104 = 248 X 105
03 x 05162
M 103 x 0 — 895 X 104, £, = 2:54 x 106 L (1.19)

T 306 X 106 — 091 x 1057, 372
I R = 10187071 — 13277712 = 300, R, = 6-88 X 10~5 cm
Mo: e = 1-0327Y7[1 — 105672} = 308, R, = 7-06 x 10~5 cm

a

We plot in Fig. 10(a) vs undercooling, for the nickel nucleus, on the basis of similar, method I,
calculations, Rn, Ry — 1. (Ro/Rs) — 1, as well as (Rg/Rxn) — 1. [Recall (6.10) that R} represents the
least initial radius that is required so that a negative pressure region may develop in the liquid
surrounding the nucleus.] The quantities ¢4, Ry, ¢ are plotted in Fig. 10(b). The curve ¢, has a high
undercooling branch and a low undercooling branch [formulas (6.13) and (6.11)]. The discontinu-~
ous iransition from one branch to the other occurs at a U, value intermediate to 0-25 and 0-025;
its precise location would have to be determined by plots of type Fig. 9(c) obtained from numerical
integration for a host of U, values; this task we did not undertake. (po — par)atm = rm/Ro and
P — po are plotted in Fig. 10(c); ps(0) in Fig. 10(d); ps(t») in Fig. 10(e). All plots are made for the

cases Ro/R, = 2V/3, 1:01, 1-0001, as well as for the cases R/R, and R/Ry, where
R _ | Uu TN [Ty
Ry cT%A 4o
R/R, =1 + 0-190 x 102U,
Formula (7.1923) of J. W. Cahn is obtained by selecting Ryp — Ry, as the radius increase R — Ry

that produces a departure of ®7?* from the maximum Wmnax of the free energy W at Ry [see, e.g.
p. 238 of reference [4] for the expression of W]:
1 2W(Rp)

—MT}'“‘—-': W—Wmax=iwa‘722—(RO“Rn)2

"o

1 (7.19a, b)

(7.20a, b)

T3

Formula (7.19b) assumes a departure of 10x7%. In other words, it is assumed that thermal fluctua-
tions may produce nuclei of size R, or perhaps size R.

HM—Q

4
W = 4n0'R2 — 3 RTX
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8. THE SPECIAL CASE ¢ =0
In what has preceded it was tacitly assumed that € = 0, ¢ == — 1, and division by € and 1 -j-
was freely undertaken. The important special case ¢ = -— 1 (which closely represents the nucleation
of vapor bubbles) will be relegated to a later study; here we summarize the modifications demanded
by the special case e = 0. We may conceive of the metal as existing in various physical forms,
distinguished only by the value of «. We want to investigate the dependence of the pressure field,

in particular of pa, on e, all other properties of the metal being held constant. This curve [sec
(6.8b), (2.16a)]

— — ] — H et e S
PM — P (1 — %)y A T . (8.1a)

is plotted for the case of nickel at 175°C undercooling and initial radius Ry = 213R,, in Fig. 11,
solid lines.
On the other hand, when € = 0, then by (2.7b), (2.9a) also

u(r) =ur =0, p(r)=pr=po (> Ro) (8.2a, b)
Thus there is no flow in the liquid, no accompanying pressure change; in particular the pressure at
the freezing front is the ambient pressure pw. The pressure on the solid phase is given by (6.15);

the stagnation term 529?2/2 is now absent. Furthermore, by (2.11, 18) the interface temperature (the
freezing temperature) is now given by

20' : Rn %n)

The dynamic terms associated with Uy are absent. Supplementing relation (8.1a) which indicates

e—>0+: py— — o0, e>0": py—+ (8.1b, ¢)
we now have
e=0: py=peo (8.1d)
30,000
:
Py P O

r 1.1, !

-0 €.l.€ € 10
M

[ DA —— =

-

Nickel , 7 ~75+175deqC, £/RF0794:

Wowpg)  * =53 Le

i

30,000

Fi1G. 11. Solid line and dot at origin indicates variation of maximum pressure pys with density parameter ¢ by
present theory; dashed line shows expected behavior in a more refined theory.
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It seems that in a more refined description of the phenomenon, by utilizing more elaborate
differential equations than those employed in section 2, the transition in py — peo from — oo
through O to + o0 as e changes from positive to negative values would have to take place somewhat
in the fashion indicated by dashed lines in Fig. 11. Within the range ¢ to € (where ¢ < 0-06, since
nickel, ¢ = 0-06, fits the present analysis) the behavior would have to depart from (8.12). Determina-
tion of &, ¢ for which peak |py| occurs constitutes an interesting problem, outside the scope of the
present study.

When e is neither 0+ or 0~ but is precisely zero, then the interface condition (8.2¢) in conjunction
with the initial values

U =Upr=0, Z2(0)=1, Z(0)=0 (8.3a, b, ¢)
imposes the requirement
Ry =HKo=1, Ro= Ry 8.9
Replacement of relations (5.11) by
R=1-+byer2+ba?4 .., Ur=fir+fop™2+ ..., Uc=cap?tart+.. .,
wediyp 2 tdird ..., == J(AH2) V2 E=1 (8.5)

[equation (4.3) can no longer demand that 71 > 2, since now %g = 0 and the # term is absent in
(8.2¢); for the sake of simplicity we henceforth restrict ourselves to the I approximation] leads to
equations for the coefficients analogous to (5.129, 125, 122) which we do not write out. (8.2c) now
gives rise, in place of (5.13), to the relation

firt o4 . = Usl = {1l —b3p 2 —byr2 4 ...}] (8.6)
It follows, in conjunction with the analog of (5.125), that

fi=fip=...=bgpp=bs=...=0 (87)

&, is again found to be a radius of neutral equilibrium.

Thus, in order that the process of freezing may get under way, it is necessary to relinquish (8.4)
and the condition (8.3c) of zero initial velocity that prompted it. Writing

R=1+ b2+ biv+bye ™%+ ..., Up=fot+fipm2+fir+ ...,
Uc=cipm+car+ ..., w=dypt2+dir+..., I=hp =/ (X2, E=1

©8.8)
we find, in place of (5.129, 125, 129, 13) the relations
A cyz A cz e hpefip
ve 122 1p A 0 (1hys — 2 iz g Cr fH2J12
for 4o oz +3hpe 11/2> + for <(§bu2 71'1/2) % +§ﬁ)+ 7 7%
AN\ ey —
-+ (%buz —~thpe +7£/—2) _lff_f;f}”/_?_“ b1 — b3+ $byplye — S 1y — 2-%’> +...=0
(8.91)

K 1 K d
T2 <% bije — (11—;2 + ‘71-1;) fo >+ 0 <b1 + 387 + (c12 —f1/2)?;; + (a—l%; —2 K) Jo

_fm + b2 fo

i +...=0 (89p)
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b
Sor12 <1 bijs + 5 duz — -——> A for® < b1+ By + 2bypdiye + 2d3, + di — diﬁ
+ - +f1/2( b1;z+d1/2—_)>+ ..=0 (890)
d]/2 jb
= fo + Uu(l — )+ 7% — fij2 + UnBnbrje) + (= f1 + UuZulbr — b3)> + ... =0
(8.9p)
They lead to
K
fo= Ut =, =72+ [() 20 -0 |
1/2 1/2
z ' (8.10)
bip =2 (11/2 i )fo, cye = (3171/2 — 32+ 5m)f0 %
Sz = UZnbyse, ... J
For example, when
H =K=1, Uy=025 %,=0794 (8.11a)

then
Jo=005150, dip = 1-3064, by = 02245, c12 = 0-3624, fi2 = 00446 (8.11b)

In order that growth may start, a radius fluctuation to a value Ry > R, is necessary. The surface
temperature of the nucleus then jumps (instantaneously) from Tw to Two + (Tr — T )(1 — &),
and freezing ensues with infinite initial velocity. Since both liquid and solid phases have the same
density, no physical motion occurs, no inertia effects are involved, and compressibility plays no
role. The freezing process for e = 0 is thus seen to be totally different from that of case || < 1
and the question—as mentioned before—then arises how the transition from || € 1 to ¢ =0
takes place.
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Zusammenfassung—Wenn Nickel in seiner weniger dichten Schmelze erstarrt, die um mehr als 175°C
unter ihre Gleichgewichtserstarrungstemperatur abgekiihlt ist, zeigt das verfestigte Material—wie es
zuerst von J. L. Walker beobachtet wurde—eine aufgelockerte Feinkonstruktur (vermutlich als
‘Ergebnis einer von den riesigen, negativen Driicken um die wachsenden Kerne verursachten Kavitation),
wohingegen bei geringerer Unterkithlung als 175°C die beobachtete Struktur grobkornig ist. Zweck
der vorliegenden Analyse war, numerische (theoretische) Schiitzungen fiir die Driicke, Stromungs-
geschwindigkeiten und fiir die damit verbundenen Zeitmassstibe festzulegen. Dies bedingte eine
Studie iiber Erstarren, das sich aus einem endlichen Ursprungskeim entwickelt. Unter Verwendung
einer “‘verallgemeinerten Orthng malisations-Losungsmethode™ wird der Erstarrungsprozess weiter
auf der Basis der inkompressiblen, nicht zihigkeitsbehafteten Hydrodynamik verfolgt, wobei die
Druckabhiingigkeit der Erstarrungstemperatur ebenfalls mit einbezogen wird. Die Ldsung des
Hauptsystems der Differentialgleichungen wird als eine Summe ¥,X-1 Fi von [Vektor] Funktionen
Fi(®) (£ ist die dimensionslnse Radialkoordinate) angefiihrt, deren Zeitabhiingigkeit (= ist die
dimensionslose Zeit) von den Orthogonalititsbedingungen (Grenzschichtintegralgleichungen)
bestimmit wird, worin die Integranden-Gewichtsfunktionen vom Typ & verwendet werden.
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k=0,1,..., K— 1. Wir bezichen auf Niherungen I, I[, III, .. . wenn K =1,2,3,... (K=1
entspricht der konventionellen Grenzschichtldsung vcm Typ Karman-Pohlhausen-Goodman-—
Veynik) und auf die Niherungen IIy, IIy, 1o, wenn & = 2 und m = 1, 4, 0. Wenn fir S Fx(£) eine
Reihe von in 7 gestérten und in § abklingenden Exponenten verwendet wird, unterscheidet sich das
Diagramm fiir die Losung Il in seinem asymptotischen Verhalten (r — o0) nicht von der genau
bekannten strengen Losung des Problems, wo der Kern vom Radius 0 aus wichst und die Druck-
abhingigkeit der Erstarrungstemperatur nicht beachtet wird. Dieser asymptotische Bereich wird
jedoch erst erreicht, wenn ungefdhr 10-7 s vcm Wachstumsbeginn an vergangen sind, wihrend der
maximale Fliissigkeitsstrcm zum wachsenden Kern (bei einer 100 m/s iibersteigenden Geschwindig-
keit) in den ersten 1011 s erfi Igt und ven Spannungen von mehreren tausend Atmosphiren begleitet
wird. Dieser erste Teil des Phiincmens (bis 1011 s) kann durch in 71/2 in den Storfaktoren ansteigende
Potenzreihen, der letzte (nach 10-7 s) durch in +1/2 abfallende Potenzreihen dargestellt werden. Der
riesige dazwischenliegende Zeitanteil muss durch numerische Integration des zugehorigen Differential-
gleichungssystem iiberbriickt werden. Ausser der Bestitigung der erwarteten Druckverteilung ergab
die Analyse auch ein unerwartetes Ergebnis, Der Erstarrungsvcrgang, wie er jetzt beschrieben wurde,
unterscheidet sich fiir den Fall der genauen Null-Dichteinderung véllig ven dem fiir infinitesimale
Dichtednderung. Letztere beginnt v n einem endlichen Anfangsradius ausgehend mit der Geschwindig-
keit 0, die erstere mit unbegrenzter Geschwindigkeit. Diese Unstetigkeit (mit der Dichtednderung) in
der Losung zeigt, dass weitere Studien nétig sind.

Annoranua—Horna HHUKeIb 3aMep3aeT B CBOEM MeHee INIOTHOM PACIIIABE, OXJIAMKACHHOM
Gomree uem Ha 17H° HUKe CBOeli PABHOBECHON TeMIlepaTypH 3aMEP3AHUSA, 3aTBEPAEBAIOIIUI
MaTepHall NpefcraBiaAeT cobolt, kak Brepree Habmoxan [x. JI. Yoakep, MEIKO3epHUCTYIO
ANCIIEPCHYI0 CTPYKTYPY (HOBMAMMOMY, KAK pe3ylbTaT KABUTALMM, BHIBBAHHOW GOXbIIMMHN
OTPUIIATENLHEIMI JABJIEHUAMY , OKPY/KAOIIUMHI PACTyLIie AAPA), B TO BpEMA KAK IIPH 0XJIaK-
TeHuHN MeHee TTyGOKOM, UeM YKa3aHHOe, HabiiogaeMast CTPYKTYPa GymeT KPYIHO3EPHICTON.
llenr macrosmeit paGoTH COCTOMT B HAXOMTEHNM YMCIEHHHIX (TEOPETMYECKHMX) OIEHOK
MaBlIeHN# CKOpOCTedl MOTOKA M COOTBETCTBYWINUX MACIITAGOB BpeMeHH. JTO BHIHYHIaeT
paccMaTpUBaTH 3aMep3aHNe KAK MIPOLECC, PASBHBAIIIMIICA OT HAYAIBHHX Aep (3apoariielt)
KOHEYHEIX pasmepoB. IIporecc saaMepaanus OMUCHBAETCHA HA OCHOBE AUHAMMKMA HECHUMASMO
HEBFABKOM KUIKOCTH ¢ NCHOJL30BaHNEM PpeIleHMit, IMOJY4YeHHHX «MeTOmoM o0ofmennolt
OPTOTOHAIMBANUM» ¥ C Y4eTOM 3aBUCHMOCTM TEMIIEPATY PHL 3aMeP3aHUA OT laBiieHns . Pelenue
OCHOBHOI ccTeMB AU PepeHIMATLHEX YPABHEHUH HPeICTABIACTCA KaK CyMMa BULa So5—1 Fy
BeKTOPHEX QyHRImil Fi(¢) (¢ ecTh GespasmepHas paguaibHAs KOOPIUHATA), Ybs BABIUCHMOCTh
OT BpeMenH (~—0e3pa3MepHOe BPeM ) OlpefieIHeTCA U3 Y CIIOBII OPTOrOHAILHOCTH (MHTErpahb-
Hble YPaBHEHUA [IIA HOTPAHUYHOTO CJIOA) ¢ HCIIOJIH30BAHHEM B IOAHHTEI PAIBHBIX BHPAKEHUAX
BeCOBHIX QyHEmmit Tuma £ k=01..., K — 1.

Mu ncnonwsyem mpubmmsenua I, II, IIT .. . worma K=1,2,3 ... (K = 1 coorser-
cTByer OOBIMHOMY pelleHMI0 IorpaHmuHoro cios tama Kapmana-Iloawraysena-I'ymmena-
Beitnura) n npubmmsenus 111, 11y, ITonpu K = 2w m = 1,4,0. Ucnonsayn gus TFi(£)
[OCIIEI0BATEIbHOCTh BOBMYINEHHHIX (10 7) 3aTyXawMuX (M0 £) MOKA3aTeNbHHX QYHKIWIA,
Obl10 Haifeno, uro rpadux pemenna Ilo 0 cBOEMY ACHMITOTHYECKOMY IMOBENEHMIO (IMPU
7—> 00) HE O'MINYAETCA OT XOPOIIO H3BECTHOTO TOUHOTO peIleHUS 3a7aul, KOTAa AXPO pacTeT
OT HYJEBOTO pajguyca, a 3aBHCHMOCTL TEMIIEPATYPHl BAMEP3AHUA OT JABJEHUA HE YYMTHI-
Baercsa. OfHAKO 3TOT ACHMNTOTHYECKMIT TIEPHOJ, HE HACTYIAET PAHbIIE YeM TPUCIN3UTeNIHLHO
10~7 cex nocne Havana pocra, TOrga KaKk MaKCHMAaNbHBLL HANOD KEKOCTH HA pacTylee sIpo
(co eropoctrio Brime 100 M/cex) npoucxomnt B Tedenuu nepneix 1011 cek u COMPOBOKIAETCA
HANPFAKEHUAME B HECKOJIBKO THICAY aTMoc(ep. DTy HepBylo TacTh mpoiecca (zo 10-1! cek)
MOMHO BHIPA3UTH BOSPACTAIOIUM CTETIEHHBIM PAXOM 1O 72 mocmexunit yuacrok (mocae 10-7
CeR)—yORBaOWIKMIt CTeTICHHEIM PAXOM [0 7! 2; & IHOBegenMe B GOJNLIION MPOMERYTOYHOM
001acT MOKHO ONMPeeNuTh IPH IIOMOLM YHCIEHHOrO MHTErPUPOBAHUA COOTBETCTBYMOIIElt
cucreMs! AnddepennuanpHEX ypasHeHuit. KpoMe monTBep e Hns 0:MULAEMOr0 pactpenese-
HIS JABIEHUA AHAJMS L)l HeO:KUIAHHEI pesynpraT. Hak Temeps odeBUAHO, NPOIECC 3aMep-
BAHMA [JIA CJIy4asd HYJeBOT0 W3MEHeHHA IIOTHOCTH COBEPIIEHHO OTJIUYEH OT IIpouecca
3aMepsaHuA [JA GeCKOHeYHO MAaJIOr0 M3MEHeHUA IIoTHOCTH. [locmemuumit madmHAaeTcA ¢
HAYaJIbHHIX fieP KOHEYHBIX PasMepOB NPH HYIIeBOll CKOPOCTH, a epBHHA—Ipn Geckoneunol
CKOPOCTH. 3TOT PaspEB (C M3MeHEHMEM INIOTHOCTH) B pelleHMAX YKA3HBAeT HA HeoOXOomu-

MOCTb HaJIbHERIIero U3ydeHHd.
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