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Abstract-When nickel freezes into its less dense melt, that is cooled by more than 175°C below its 
equilibrium freezing temperature, the solidified material exhibits -as first observed by J. L. Walker- 
dispersed fine-grain structure (presumably as a result of cavitation induced by huge negative pressures 
surrounding the growing nuclei), whereas for undercooling less than 175°C the observed structure is 
coarse grained. The purpose of the present analysis was to provide numerical (theoretical) estimates for 
the pressures, flow velocities, and time scales involved. This necessitated study of freezing as proceeding 
from afinite initial embryo. Using a “generalized orthogonalization method” of solution, the freezing 
process is traced out, taking the pressure dependence of freezing temperature also into account, on the 
basis of incompressible inviscid fluid dynamics. The solution of the governing differential equation 
system is represented as a sum 2 /-r R of [vector] functions R(t) (4 is the dimensionless radial 
coordinate) whose time dependence (T is dimensionless time) is determined from orthogonality con- 
ditions (boundary layer integral equations), using in the integrand weight functions of type tkm; 
k=O,l,..., K-l. We refer to approximations I, II, III, . . . when K = 1, 2, 3, . . . (K = 1 corre- 
sponds to the conventional boundary layer solution of the type von Karmin-Pohlhausen-Goodman- 
Veynik), and to approximations 111, 111, 110 when K = 2 and m = 1, 4, 0. Using for xF&) a sequence 
of perturbed (in t) decaying (in 0 exponentials, it was found that the graph of solution 110 is, in its 
asymptotic behavior (7 + a), indistinguishable from the well known rigorous solution of the problem 
where the nucleus grows from zero radius and pressure dependence of freezing temperature is ignored. 
However, this asymptotic era is not reached until elapse of about lo-’ s from start of growth, whereas 
the maximum inrush of fluid on to the growing nucleus (at a speed exceeding 100 m/s) occurs in the first 
lo-l1 s and is accompanied by tensions of several thousand atmospheres. This first portion of the 
phenomenon (to 10-l’ s) may be represented by ascending power series in +i2 in the perturbation 
factors, the last portion (past 10-r s) by descending power series in 7 1 2; the huge intervening portion / 
must be bridged by numerical integration of the pertinent differential equation system. Besides 
corroborating the expected pressure distribution, the analysis brought forth an unexpected result. 
The freezing process, as now described, is, for the case of precisely zero density change, totally different 
from that for infinitesimal density change. The latter starts from a finite initial radius, with zero 
velocity, the former with infinite velocity. This discontinuity (with density change) in the solution 

points to the need for further studies. 

NOMENCLATURE 

Dimensionless equivalents of the dimensional 
quantities are in brackets; examples, in braces; 
some symbols introduced and used only in one 
place are not listed. 

r Kl, radial distance; 
R VI, radius of freezing front; 
T[U= Wl + 6)], temperature; 

;;{I> pressure; 
7) time ; 

u’ VI, interface surface energy (in me- 
chanical units) ; 

A, heat of fusion of solid (A’ in 
mechanical units) ; 

% liquid velocity; 
z(z) pg(l?), weight density of liquid (solid); 

Wj, 
specific heat of liquid (solid); 
conductivity of liquid (solid), 

‘0 diffusivity of liquid; 
CL9 chemical potential; 
S, entropy; 
% Boltzmann’s constant; 
EC y= E - 1, factor of density change 

{(2.14), (3.14)); 
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R, x, conductivity ratio ((2.16)); 

8, equation; 
A, w, 1, functions appearing in U {(3.6)}; c, 
/3, a, 6, v, y, h (6, a, d, f, c, f), coefficients in C, 

asymptotic (convergent) expan- 
sions ofd, A, w, @F, %‘c, I; S 

4 f-% K ((4.9) 1; (3 
B,% C, g, D, 2, i(4.W); s.e., 

j, degree of inconsistency ((5.22) > ; stag, 

<‘:9, 
((4.18)); u, 
coefficient of ok ((4.2)). d, 

0, 
Subscripts 1, 

5 
equilibrium freezing value {T_}; Bp 

, pertaining to freezing front {TF > ; 
n, nucleation value {Rn}; Superscripts 

0, initial value {Ro); a, 

0, at instant of maximum velocity y;, 
(&I; > 3. * *7 

M, at instant of maximum tension 
when this is at time zero {- PM}; *p 

m, at instant of maximum tension 

when this is not at time zero 
(-Pm}; 
at instant of zero pressure (to}; 
pertaining to nucleus center 
{UC); 
pertaining to solid phase (Ys}; 
at r = co {T,}; 
due to surface energy {P~.~. ); 
stagnation value {pstag}; 
due to undercooling {&}; 
due to density change {%d}; 
outside of interface {go}; 
inside of interface {&I}; 
on boundary (8~) ; 

absolute {P}; 
approximate (8} ; 
pertaining to various components 
of CJ ((3.6)); 
pertaining to least inconsistent 

choice {P}. 

Part I. Application of “Generalized Orthogonalization Method” to Solution of 
the Nucleus Growth Problem 

1. INTRODUCTION 

WHEN the freezing phenomenon is accompanied 
by density change, the dynamics of fluid motion 
cannot be ignored-for when the frozen phase 
is denser, an inrush of fluid is required to fill 
the void that would otherwise be created near 
the freezing front. This inrush of fluid is accom- 
panied by huge negative pressures. The negative 
pressure is, in fact, infinite when a spherical 
nucleus of originally zero radius begins to grow. 
For this reason the greatly simplifying assump- 
tion employed in reference [I], that of zero 
initial radius (which permits solution of the 
problem in closed form), must be surrendered 
and replaced by the more realistic assumption 
that a couple of dozen liquid molecules con- 
glomerate into a solid-like mass (“embryo”) and 
then, suddenly, the freezing phenomenon takes 
over. Theories are available for the ways this 
“nucleation” takes place [2-4]; in fact, quantita- 
tive estimates are furnished for the number of 
participating molecules and the radius Rn of a 

m:tastable nucleus (see, e.g. reference [2b], 
p. 260; reference [4], p. 245). The foregoing 
estimates are derived from molecular-kinetic 
considerations. But once the initial nucleus with 
radius Rn is established, its further growth may 
be studied by the methods of continuum fluid 
mechanics and heat transfer. The need for such 
an investigation was signalled by J. L. Walker 151 
and his followers [6] who observed a fundamental 
change in the nature of freezing into an under- 
cooled melt. Walker noted that, for undercoolings 
less than 175”C, nickel freezes in coarse grains 
(grain diameter of the order of cm); for under- 
toolings larger than 175”C, the solidified metal 
is fine grained (grain diameter of the order of 
10-s cm). Walker attributed this to occurrence 
of cavitation when the tensions about an in- 
cipient nucleus become larger than the fracture 
strength of the liquid. Fluid fracture strength 
was estimated by Fisher [7], and his method of 
estimate was also adopted by Irwin [8]. Accord- 
ing to Fisher’s formula-equations (61) through 
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(63) of reference [lE-_liquid nickel should 
fracture when subjected to a tension of about 
50000 atm; but it was pointed out that this 
crude estimate may be in error (the estimate may 
be too high) by a factor of 10. 

The analysis given in the present paper indi- 
cates that, at an undercooling of 175”C, tensions 
in excess of 2000 atm develop around a growing 
nickel nucleus, and persist for time spans of 
IO-11 s. The velocity of the inrushing fluid 
exceeds 100 m/s for about lo-lo s. The huge 
pressure variations make it mandatory that the 
pressure dependence of freezing temperature be 
accounted for. The present analysis, following a 
suggestion of John W. Cahn, properly incor- 
porates this effect. Another consideration that 
the huge tensions and velocities call for is the 
accounting for compressibility of liquid and 
solid. The present analysis based on incom- 
pressible fluid dynamics, will furnish the picture 
that the tension field andflowjeld are instantane- 
ously created throughout the @id at time t = 0; 
this picture is, of course, incorrect. An even 
more tantalizing inconsistency to which our 
analysis leads is the implication that the situation 
becomes graver and graver (the tension maximum 
increases to infinity) as the density change 
during the phase transformation decreases to zero. 
This conclusion is reached by studying the 
behavior of, say, a sequence of samples of the 
given metal, all having the same properties, 
except for the density change (see Fig. 11). It is 
not clear at this point whether this crisis can be 
resolved by incorporation of compressibility 
effects, or whether further physical principles 
must also be invoked. 

Future refinements of the theory should in- 
corporate, as already mentioned, compressibility 
and viscosity effectr.1 the limiting cases of 
E = -1 (conversion of liquid into vapor) and 
of very small (~1 (this seems to present a 
“boundary layer” effect with respect to the 

$ The present theory predicts that, while freezing 
velocity rises (except when the density change parameter 

Q = 0) to a maximum R, in a small time tv (E lo-11 s), 
the maximum tension, - PM, is instantaneously estab- 
lished at t = 0. A theory incorporating compressibility 
should lead to the more realistic picture that - p,,, also 
requires a rise time TV, although this may be negligibly 
small compared to tv. 

parameter E), as well as a study of pressure wave 
interactions with other nuclei and other pressure 
waves that play a vital role in determining the 
nature of the grain structure of the metal. 

The paramount questions, however, pertain 
to the kinetic foundations of our assumed initial 
condition: an embryo of critical radius Rn 
exists; this is carried by an energy fluctuation 
into a size Ro > R,,. Are there other, more 
suitable fluctuation mechanisms that will like- 
wise start off the process? Is use of deterministic 
continuum mechanics permissible in the small 
time and distance intervals involved (tv and 
RV - Ro) during which all the interesting pheno- 
mena occur, or should a probabilistic-molecular 
approach be adopted? The importance of such a 
query becomes apparent from Fig. IO(a). A 
XT; energy fluctuation, at 70” undercooling, 
carries the nickel nucleus from metastable 
radius size R, to initial radius size Ro = 1.02 R,. 
In contrast, the radius at the instant of maximum 
velocity, tv = 3 x lo-l2 s after start of freezing, 
has grown only to R, = 1.008 Ro: the change in 
radius in time tv is (except for the largest under- 
toolings) less than that produced by the original 
fluctuation. 

In spite of these reservations about the physical 
foundations of our approach, a hydrodynamic 
study, based on incompressible inviscid fluid 
dynamics, may be regarded-as matters now 
stand with the freezing problem-a valuable 
forward step. It leads to results for metals which, 
when the density change is not too small, are 
consistent in their main features with the ex- 
perimental evidence of Walker, and with Fisher’s 
estimate of fluid fracture strength. The mathe- 
matical approach, a generalized orthogonaliza- 
tion procedure (alternately, it may be regarded 
as a generalized boundary layer method) is also 
of interest, per se. 

In section 2 of the paper the governing partial 
differential equations of the problem (2.17-21) 
are established. In section 3 these are converted, 
by the orthogonalization method, into approxi- 
mating ordinary differential equations (3.15). 
Section 4 presents the solution for 7 9 1 and 
agreement with the conventional solution (where 
growth from zero radius is assumed) is estab- 
lished. Section 5 deals with the case of T $ 1 
(start of growth). Section 6 discusses various 
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critical radii (nucleation radius, radius at time solution. Part II of the paper deals, more speci- 
of maximum velocity, at time of zero pressure). &ally, with the nickel nucleus. In section 7 are 
The foregoing sections constitute Part I of the presented numerical results based on the methods 
paper, and are concerned princip~ly with defini- of sections 4 and 5, and numerical integration in- 
tion of the problem, establishment of method of between. Section8 discusses thesingularcaser = 0. 

2. THE GOVJIRNIN G EQUATIONS 

The governing equations for the velocity U, pressure p, and temperature T of the inviscid, incom- 
pressible liquid phase, in spherically symmetric coordinates (see (1) of reference [I]) are: 

continuity : (t2 U)r = 0 

Motion : Ur + f% = - prlp (2.la, b, c) 

Heat : Tt i- UTr = K (Trr i- 2Trlr) 

These are to be solved for the boundary conditions (see (3) of reference [I]): 

at r= co: P=PW T= T, (2.2b, c) 

(the condition 

at r= co:u=O (2.2a) 

cannot be imposed, because of our restriction to incompressible fluids, but it wilI be found to be 
obeyed anyhow), and 

at r = R (t) = freezing front: u = - c rl, + = 
1+E.. 
,-If, T =z TF z Tf -j- AT (2.3a, b, C) 

Here k, c, y = pg, K = k/ye are conductivity, specific heat, weight density, and diffusivity of liquid 
phase, and K, C and 

P=(l + ‘)Y (2.4) 

are conductivity, specific heat, and weight density of solid phase. TV denotes the factor of density 
change. h = heat of fusion of the solid in thermal units (Cal/g), X’ = heat of fusion in mechanical 
units (g*cm/g). The formula for the freezing temperature change effected by pressure (Ta = absolute 
temperature; see Appendix) is : 

ZLZ - -;g rps.e. + Pstag - E (PP - Pm11 (2.5) 

Here ps is the pressure on the solid phase, 

pa&?. = 2Q’lR (2.6a) 

is the pressure on the solid phase cont~buted by interface surface energy (~~rnl~z), and 

&tag = &f/2 (2.6a) 

is the stagnation pressure. UF, pF, TF are speed, pressure, and temperature of the fluid at the freezing 
front. Tf is the equilibrium freezing temperature for an ambient pressure pm and planar interface. 

The continuity equation (2.la) is satisfied by 

u (r) = R% (R)/r2 (2.7a) 
By virtue of (2.3a) we may also write 

u (r) = - E R2 A/r2 (2.7b) 
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The equation of motion (2.lb) may be replaced by the integrated (Bernoulli) form (see equation 
(lb*) of reference [l]): 

p(r) -pm = ~2 a rudr --_- 
2 at s P 

m 

(2.8a) 

which by virtue of (2.7b) becomes 

p(r) - Pm __ 1 9R4& R2li ti2 

P --z-F--- 
r--22E- 

r r 

and yields for the pressure at the front 

PF-pp(R)=p~~- pE {kf(2$ E/2)k2} 

From (2.6b), (2.7b) the stagnation pressure is 

p&&g = pu;/2 = p&2/2 

Consequently, by (2.5) : 

(2.8b) 

(2.9a) 

(2.9b) 

- l?x’ AT/T; = p8.e. + pstag - e (PF - Pm) = ; + PC2 
5-l-E 

fi + 2 A2 

The relation (2.10) may be rewritten in the form 

In the foregoing 

2o’/l? A’ 
Rn = rT?n = 

20’ c TTlh -- 
rh’ vu 

(2.11) 

(2.12) 

[U, is given by (2.16b) below] is the critical static radius (the “nucleation radius”) at which, due to 
surface tension effect, TF is depressed to Too: 

TF - Tm = 0 when R = R,, l? = j = 0 (2.13) 

Next we consider the temperature equation (2.1~) which, by virtue of (2.7b), becomes 

.,+(2+Y$);-;=O, YSE (2.14a, b) 

Occasionally (for the purpose of comparing our analysis with other methods) one may desire to 
neglect thermal convection, and accordingly set 

Y=O (2.15) 

We non-dimensionalize our equations by writing 1 

E = r/Ro, L%?(T) = RIRo, T = d/R:, #i = Rggp/&y (2.16a) 

e2 CT: K2 
ud=lt_-, 

E X R;gX 
(2.16b) 

R= K/k, _?i? = Kc/kC(l + l ) (2.16~) 

for distance, radius, time, pressure; temperature; relative conductivities. Here RO is a suitable 
reference length, to be specified later, in (2.21), as the initial radius of the nucleus; ud will be referred 
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to as the “density parameter”, VU as the “undercooling (parameter)“. We shall use dots to denote 
T derivatives of dimensionless quantities, like W. Dotted R denotes t derivative. Then the “Outside 
equation” (2.14) becomes 

(2.17) 

subject, in accordance with (2.2c), (2.1 l), (2.3b) to the boundary conditions 

t=a: u=o 

5 =&?: bBE(l_t +6&-t_ U,(W1_0)-KU&LO)=0 (219) 

We refer to (2.18b) as the dynamic temperature relation and to (2.19) as the freezing (or moving) 
boundary condition at the interface. 

Condition (2.3b) implied that the frozen nucleus is isothermal (at TP); an equivalent assumption 
is that K = CCL In equation (2.19) we slightly generalized the relation, admitting temperature varia- 
tion also in the frozen phase. Correspondingly, we must state the conduction equation also in the 
frozen phase (“Inside equation”) 

(2.20) 

The initial conditions are 

7= 0: S’L?&Sl, 8=0, u=o 

The pressure expression at the front (2,9a), is now written in the form 

(2.21a, b, c) 

(2.22) 

3. GENERALIZED ORTHOGONALIZATION METHOD 

Solution of a differential equation a( CJ) = 0 by the conventional orthogonalization: method 
(see, e.g. Collatz [9]) consists in seeking an approximate solution 0 of the form 

0 = Fo + 5 ck Fk (T, X) (3.1) 

(here FO satisfies the inhomogeneous boundary conditions of the problem, the functions Fk(k > 1) 
satisfy homogeneous boundary conditions; T, x are abbreviations for the independent variables 
71, 72,. . 1; Xl, x2,. . . ) and determining the coefficients Ck from the conditions of orthogonality of 
error &( 0) to conventiently chosen functions gk : 

k= 1,2,. . ., K: &(O)j_gk, i.e. J &(~gk(~,x)dxd~=O (3.2) 
T’, x 

In particular, when the gk are chosen as the Fk, then the method is referred to as Galerkin’s method. 
Furthermore, if 0 and its derivatives up to the orders appearing in d are continuous, then J(o> 
is also continuous; if, moreover, the integrand vanishes near infinite boundaries in an adequate 
manner and the gk constitute a complete set of functions, then &(n + 0 as K + co. Hence 0 tends, 
as K-t co, to a solution of 8’(U) = 0. 
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A generalization of the conventional orthogonalization method consists in the following. We 
adopt as starting point the approximate solution 

a=$& {~,x,wj(~)] (3.3) 

i.e. instead of numerical coefficients Ck we now seek to determinefinctions wj(~) (which, moreover, 
need not appear as linear factors appended to the Fk). And in place of (3.2) we now write 

k=O,l,. . .,.K: jX(O)g&,x)dx=O (3.4) 
x 

i.e. we omit ihe 7 integration. Theh the orthogonalization conditions (3.4) reduce to K + 1 ordinary 
differential equations for the functions wj if r is a single variable T, and to partial differential equations 
for the functions wj if 7 represents an aggregate of variables ~1, 72,. . . . 

In our problem, equations (2.17, 20, 19), we have the single 7 coordinate 7, and the single x 
coordinate 5. We choose for functions gk the two sets 

[>L%: go= l,gk=(t-W)k 

g 69’: ho= l,h3= 4j I 

(3.5a, b) 

while we write (omitting the tilde from the 8) 

,$ > 9: u(T) = UF (A’ exp [- (5 - 8)/W’] f A” exp [- (6 - w)/w”] 

+ A”’ exp [- ([ - 9)/w”‘] + . . . } A’(T) + A”(T) + A”‘(T) + . . . = 1 (3.6a) 

.$ <.%: u(T) = UC + (up - UC) (f/b%)2+1’” (3.6b) 

i.e. we assume that U(T) decays exponentially from the value (2.18b) at W, to 0 at E = co, in the 
liquid phase, characterized by decay distances W’(T), W”(T), . . . and coupling functions Atk)(7); 

while U(T) rises from UC(T) at the sphere center to UR(T) at the interface as a power of E/g, with 
variable exponent 2 + l/1(~). We shall refer to (3.6a), when terminated with ,4(k) [exp - (E - L%)/ 
w(k)] as the A(k) (or briefly, kth) approximation. Clearly, our assumed expressions (3.6a, b) automa- 
tically satisfy the boundary conditions (2.18a, b) in the somewhat stricter form: 

t= co: ~U=~U,=O, i$=W: u= UF (3.la, b) 

while the freezing condition (2.19) must still be imposed. 
The particular choice (3.6b) is suggested by the observation that the rigorous solution U(T) of the 

problem where a unit temperature jump UF - UC = l(7) [l(~) = Heaviside function] is imposed at 
time T = 0 on a sphere surface .% creates at small times a surface gradient 

7 < 1: i?u/&&‘_ 0 = 1/2/(PT) (3.8) 

see Carslaw and Jaeger [IO], p. 348, equation (6). For the UF - UC = l(7) boundary condition our 
expression (3.6b) likewise gives an infinite surface gradient at time 0 if (3.11c), (5.11) is assumed, 
and so does (3.6a) for iXJ/afg+ o if (3.1 lb), (5.1 I) is assumed. 

Integrating the outside equation (3.4) by parts, we obtain 
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i.e. on observing (3.7a) and noting that Gil) = Sk0 (= 1 for k = 0, and = 0 otherwise; k is non- 
negative, but need not be an integer) 

(d/d4 rUgxpd5= --*EJS(W-O)+(l + Y)~UUFI&O 
a 

-. i [(sz u, + YWZLG? U} gkg - t? &?k71 dt &lo@ 

while from the inside equation, noting that hj(B) = Bj, hj7 = 0, we find similarly 

(d/dT) 7 Uhj p dC = W2+j[X U, (9 - 0) + L% U,] -” X 7 p U, hg dlS: (3JOb) 
0 

In conjunction with the dynamic temperature relation (2.18b) and the freezing condition &)B = 0, 
now reading 

(l+ E)&- 
( 
$+$tt::;i...) u*+~R”w uF=o (3.lOc), 

equations (3.lOa, b), using 2K + 1 equations (3.1Oa) (e.g. k = 0, 1, 2,. . . , 2iy; or, k = 0, 4, 1,. _ ., 
K} and two equations (3.lOb) (j = 0, I), constitute 5 $- 2K differential equations for the 5 + 2K 
unknowns W, UF, UC, w’, 1; w”, w”‘, . . . ; A”, A”‘, . . ., subject to the initial conditions 

7 = 0: R= 1, &=Uv,=Uc=O (3.1 la) 

w’ =: )y” = U’(fI = . . . = 0, 1 = 0 (3.1 lb, c) 

A” = aI;, A”’ = a;’ , . . . ; A’ zzz a; zzz 1 - a;; - a;’ - . . . (3.1 Id) 

where oy, a:‘, . . . are suitable constants. Henceforth we shall omit the single primes associated 
with the A’ and w‘ terms. 

The k = 0, j = 0 members of (3.10a, b) may be referred to as the primitive boundary layer 
approximation; for these are the equations one is led to if, according to the precept of von Klirmlin- 
Pohlhausen for hydrodynamical problems (see, e.g. SchIichting [I f]) or Veynik [I21 and Goodman 
[13] for heat conduction problems, one multiplies the governing partial differential equations 
bo = 0, 81 = 0 by the volume element 47@ d5 and integrates by parts. The k = j = 0 equations 

ICxJ 
reIatelthe change in enthalpylk outside and inside the nucleus, (,5 UP d5)’ and ( TUG? dt})‘, 

0 

to the heat poured into the respective regions at the boundary. The k > 0, j > 0 equations are 
recognized as boundary layer equations, utilizing weight functions gt, hj. 

For the choice (3.5), (3.6), (3.7), the equations (3.lOa, b) become, on carrying out the indicated 
integrations and dividing the (3.lOa) equations by k!, the (3. lob) equations by BJj+i: 

-$ 
i 

, 
UF [LJP{Awk+l + A”w”k+l+ . . . } + 2(k + l)W{Aw”fZ + A”w”~+~ + . . . } 

+ (k + 1) {k + 2) (A@+3 + A”w”k-@ -/- . . . 
4 

= &(J UF@ 
[ 

A A” 
; + in, + . . . - (I + Y)l% 

‘1 
+ (1 - Sk,,) u, [~@{Aw~--~ ) (3.13a) 

+ A’~W~‘k-l + . . . ) + 2k@(Aw” + A”w“k + . . . > + k(k + l)jAwk+l + A“w”~+~ + . . . >] 

- (1 - Sk,,) .?&d [(I + Y)B?{Aw’C + A”w”k‘ + . . . } + 2kW{Aw”+l+ A”w”~+~ + . . . > 

+ k(k + ~)(Aw*+~ + A”w”%+~ + . . . f] , 
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(21+ Mj + 3) 1 

1 + lci + 5) uc + 1 + I(j + 5) IJF 11 
=9guF+l{l + &j+ 3)) 

(31 + 1)(21 + ” .x(Up - UC) (3.13b) 

Performing the indicated differentiations, using the notation 

~~u=Qna~um~l](l+E),s~l+Y (3.14) 

(m = any subscript), and restating also the equation L%C?)B = 0, one finds the equations, valid for 
j>O,k>O: 

1 21-j-l . 

j+3 1+&j+5)**C+ 

1 
-- l+I(j+5)**F+(%-%) 

Z = 0 (3.159 

({A @F)*,k+l> [@ + 2(k + @?&v + (k + 1) (k + 2) w’] + ( 1” [ I” + . . . 

+ (A @FW~) [(k + IPJ(~~ + W + 2Pw + (k + 2) (k + 3)~~) 

+ &{BWe + 2(k + l)B?w + (k + 1~ jk + 2)w2} - W2/w - 2 kg - k(k + 1) w] 
(3.159 

-I- ( 1” [ I” + . . . = 0 

Expressions like ( >,’ [ 1” mean: repeat the preceding { > [ ] expression, but replace therein A, 
w by A”, w”, etc. 

We shall regard (3.159 as the equation governing the variation of @C(T), (3.15:) as the equation 
governing 1(~), (3.15~) as the equation governing @‘F(T), (4.3a) as the equation governing W(r); 
(3.15:), (3.15$9, (3.15:9 as the equations governing W(T), w”(r), W”‘(T), respectively, and (3.15$, 
(3.159 as the equations governing the coupling coefficients A”(7), A”‘(T). The latter (3.150) scheme 
refers to the third approbation 111x; 1116 [k in (3.5a) progresses in units of 11 denotes the third 
approximation, based on (3.150* & 1~ $1 2). In first appro~mation, 1, only (3.15:) of (3.15;) will 
be utilized. 

We shall be most concerned with the second approximations 111, IIt based on (3.150,~ 19 2) and 
(3.150,9 *p I), respectively, and particularly with the approximation 110 which one obtains as one 
passes, in equations (3.1559 ks ah) to k = 0, 

For most purposes (i.e. for calculating Figs. 10) we shall need the solution only for small times 
(as represented by ascending power series in +a}, and for large times (as represented by descending 
power series in G’s), and these solutions can be determined in the 110 approximation very con- 
veniently from IIk by passage to k = 0 in the solution itself. However, when we are concerned with 
behavior of the system for all times (i.e. including the range 7 - l), then we must integrate the 
pertinent differential equations numerically from the small time solution forward to the large time 
solution or from the large time solution backward to the small time solution, as in Figs. 6 through 8. 
The outside equations 110 are obtained from (3.15;) in the same fashion as (4.17~) in the next section 
is obtained from (4. I I), utilizing the relations (4.14). Since the equations are lengthy and we shall not 
use them in the sequel, we do not write them out; we merely refer to them as (3.16:~ ‘9 ‘I). When we 
regard l(T) as the known function (4.7)-we rewrite this relation now as 
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t = 3?pll, Z(0) = 0 (3.17a) 

and denote furthermore 

z&?=(9). (3.17b) 

then (3.17a, b), the dynamic temperature relation (4.3a), the outside equations (3.16;~ ‘9 “) the inside 
equation (3.159, and the moving boundary condition (3.15~) constitute eight first-order non-linear 
equations-not containing time explicitly-in the eight unknowns I, %“, z, w, %F, A%F, %c, w”. 

4. SOLUTION FOR 7 > 1 

The pressure effect on freezing temperature rapidly disappears as the nucleus expands; therefore, 
one expects the radius to grow as ~1’s near T -+ co, i.e. as if there were no initial freezing point 
depression, and the initial radius were zero. More specifically, we assume a time dependence near 
infinity 

9 = 2&c, T1’2 [1 + &/s T-1’2 + ,81 7-l + . . .], W = 28~0 T1’2 [I + 81/s T-1’2 + . . .], 
7 

w” = 26” .1/2[1 + 6" T-1/2 + 
co w 

] . . . ) 

w"' = 3" m T1” [l + a;;, T-1’2 + . . .], 

%F=V,,+ V1/2T-1’2+VlT-1+ . . . . *C = 'J'O + y1/2T-1'2 + YlT-l+..., 

1 = 2h, T-1’2 [l + x1/2 7-l” + . . .], A = Uo + al/2 T-1’2 + al 7-l + . . ., 
’ (4.1) 

A” = a; + aG2 T-1’2 + . . ., A”’ = a;’ + a;2 T-1’2 + . . . , 

a0 + a;; + a0 “’ + . . . = 1, al/a + CL;;, + cl;;; + . . . = 0, a1 + u; + u;” + . . . = 0,. . . 

Placing (4.1) into (3.15), one obtains forj = 0, 1; B; and arbitrary k: 

(4.2;) 

- v1,2{;+; ;>+ . . . =0 (4.2:) 

+ (~2 - n/2)] 
> 

+ . . . = 0 (4.2e) 



We stated in (4.2) the equations as they appear in the 11% appro~~ti~~. @Y the third a~~rox~rnatio~ 
we have to retain also ( t_“’ f jl” type expressions and ~~~~~~ terms,) ~or~ver~ in the tight of 
(4.9, below, we did not write out in (4.21,2~) all. the (~0 - ye) co&Gents, but indicated them mostly 
by ( r* 

Because of (2.1Sb), which we now rewrite in the form 

&“&T> = $ZN 9% &?@ - @a [(6 -i_ E) L’&% + @g] J 

there exists a further relation between the coefficients Bk and the coefficients Yk. Inserting (4.1) into 
(4.3a) there results 

VrI = @Y, V[Z = -~~~~~2~~, VI I‘~~~~~~~-~~~~~~, . f _ 
m (4*41 

The condition (TO> = Q in (4.2:, 2;) [we denote the co~ffi~c~t of ~1 by {&}I leads, in the: fight 
of the first expression in (4.4), to 

$-Q = Y@ = & <4.51 
while the two equations (T +z> = CT jezd to a co~~ad~~~o~ in the ratio ~~~s~~~/~~ The reason for 
this is that the A parameters have not yet entered the scene [they first appear at the stage (~-1) = O], 
and so we bave two equations in one unknown, y1/2/v1/2. There are two ways to eliminate this 
di%culty. One is to write I(T) in the form 

r(T) = ho -!- hf&s T-x@ + AI 7-z -j” * . * f4.5) 

Then AC properly enters at an earlier stage, and no difficulty arises in solving the two (4.21) equations 
(T-~~} = 0 for y&vl~s and Ao. The second is to assume the expression of l(T) and correspondingly 
discard (4.2:). We shall adopt this second alternative both for the sake of simplicity, and because 
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the small time solution of section 5 will be seen to run into di~culty when both equations (3.151) 
are retained. Accordingly, we set 

l(T) = 2X* ‘+a f 11/s 71/s, 11/e = (X/2)1/2 (4.7) 

where &/a is the expression (5.16a) derived in the next section for small times. 
The condition (TO> = 0 in (4.20) gives 

(4.8a, b) 

In (4.Xb) and (4.10) we adopted the notation 

$2 = #8,/s,, #I’ = szjs,, CtJtrr = s;js,, Y = a* + $ + $/ + . . . (4.9) 

Henceforth we shall write w instead of w”. 
Denoting furthermore 

~~=~~3+3(~+1)~2+3(~+1}(~+2)~+(~+1)(~+2~(~+3) 

B~=SSZz+3(k+1)~~w+3(k+l)(k+2)~S2w2+(k+1)(k+2)(k+3)w3 

B;’ = S 523 + 3 (k + 1) L&.u”’ + 3 (k + 1) (k + 2) 1;20”‘~ 4 (k + 1) (k + 2) (k + 3) ~“‘3 
(4.10a) 

i&=523+2k@+k(k+ l)Q, i@;=Q3+2kf22w+k(k+ l)i2w2 

BzBo, B”=B;, &$‘=go, &C&?; (4.1Ob) 

c=3Qa+9fz+II c”=3L?%+9&s+11w3 1 
D=3L’+6 

v=2LP+sz 
t 

(4.1 Oc) 

.zB==Q 9’==BW ! 
we may write the (T (l+k)‘2) = 0 equations (4.2:) in the form 

as & + ,k a; B; + w”‘~ al;’ 3;’ + . . . 

= (!f?%,)-l [U&& + #k-1 C+%; + #“‘k-1 CL0 Y?iq + . . .] (4.1 ik) 

In particular, for k = 0 
a0 B + ab’ B” + a;’ B”’ + . . . = f231”4Ypl (4.1 lo) 

The first task, in the III+ approximation, is to solve (4.1 IO, +, 1, 8, 2) for _Q, CO, CC:, w”‘, CL; 
(note that ao = 1 - a0 - a;‘) for given undercooling U, = E%%,. In the 110 approximation we 

must solve (4.20 ‘* ‘$ “), below, for L?, W, a;. If we have a first guess $ 6, a”, . . . available for the 
quantities Q, w, a”, . . . we may write 

1;2 = D + a,, w = IiJ + s,, a; = CE; + sy, . . . (4.12) 

and solve for the small corrections a,, S,, Si,. . . iteratively, from linearized equations. 
Once the foregoing quantities are available, one can calculate &, on the basis of (4.8) from the 

formula 
Wd2 

flm = [~j=~O&ji73 (4.13) 

&, from (4.8b), Sz from w” etc. 
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For the purpose of deterring the II0 approx~ation, we expand the terms of (4.2;) in powers of 
k. Noting that 

k k2 k3 
wL=1+~~Inw+~~1~2W+3~In3w+. . .[ln2c0=(lnW)2] (4.14) 

we obtain expressions of the following sort: 

(r(k+1)‘0) = 0: j0 (xl, yl, 21) + kfl + k2fi + k3ji = Ro + kR1 + k2Rz + k3R3 (4.15a) 

<&0> = O: go (x2, y2,22)+ kgi + k2gz + Pgs = So + k& + k2& + k3& (4.15b) 

l *,..~.*...r**.*.****...**....*..*.*.....*.* 

where 
XI,YI,ZI = SW, Slij, a;; x2,y2, 22 = h/2, &;,, a&; . . . (4.16) 

(the Rk are independent of XI, yt, zt, i Z 1; the Sk are independent of ~2, ys, zt, i > 2 etc.), and all 
higher k terms are lumped intof3, Rs, gs,. . . . The equations (4.15a), written out in detail for k = 0, 
m, 2m are 

fo = Ro 

fo -k mf; i- m2f i- m% = RO -i- mR1 -I- m2Rz -I- m3R3 

i fo$2mf~+4m2f28mm3f=Ro$2mR~+4m2R~$-8m~R~ b 

By rearrangement one obtains 

.fi~=Ro, fi-2m2f3=R1 -2m2R3, fz+3mfs=Ra+3mR3 

For m -+ 0 these reduce to 
fo = Ro, fi = RI, _fi = R2 

The three equations (4.23 k* ““) are replaced, for k + 0, in this fashion by 

71’2 ("rl/z + or;;,) + 7.0 ("I'0 + Of;;> + T-1'2(or-1,2 4 Tl[,,,) + * * 1 = 0 

71’2 (TI~z + OrlIz In 8, + fr;;, + “I?;;, In 8:) 

+~0(If0+o~01n6,+‘~~+~~l;lnS~)+~~ .=o 

4’2 (“rl12 + m/2 112 6, + 1 or1,2 113 vrn + T;;, 
+ ‘I?;;, In SE + 4 or;;2 ‘n 0s:) + 70( ) + . . . = 0 

Omitting for more convenient writing, the subscript cc of &, and &, the expressions 

(4.17a) 

(4.17b) 

(4.17c) 

(4.18”) 

(4.18’) 

(4.18”) 

of the I’ 
are as follows (the r” have the same expressions, with ctk and 61 being replaced by aL, 8;‘): 

“r~,~=a0(~~+3~~+6~~2+663-~/26) 

‘r1,2=a0C3826+9BS2+11~3-_-_g);> 

“r110 = a0 (3 /3S0 + 6 60 - + S> 
(4.19&) 

M.-O 
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*ro = a0 Q 4s fl3iczli2 + 2 ,@a (2 /31/z + h/2) + 4 ps2 @l/2 + 2 &,2) 

+ 12 a3s1/2 - (PW) (2 PI12 - h/2)) + (al/z + a0 ~1/2/~0) 1 

x (B83+2826+4862+4S3--2/26j 

‘ro = ao (9 fi3&/z f P2S (4 /31/z + 5 81/z) + 6 ,W (/31/a + 3 h/2) + 28 636~in 

- (B3/2S) h/2 - Pf%;2 - i W/21 + (ail2 t- a0 v1/2/vo) 

j 

(4.190) 

x f3p%-+7/352+&63-/3---_B6) 

“ro = a (3 $%12 + PS2 (2 131/z f 13 61/z) f 23 S3hp - /361/z - 861/z) 

i- (W/2 + a0 Vl/Z/VO) (3 p@ + 5 83 - g S} 

Similarly, in terms of the notation (4.10), the equations (4.11) become replaced by 

a0 B + a; B” = ~$?/a, (4.20”) 

a0 C + ai {C” + B” In W} = (Y i’%(2L)--i [a0 P? + ai (,” + w-1 9l” In w)] (4.20’) 

a0 D f a;’ {Lt” -+ C” In w + & B” In %) = (U @(u)-l 

X [a0 5%’ -i_ a;,’ (9” f 59%” In w + 4 w-1 8’ In ~uJ)] (4.20“) 

The rigorous value of the parameter /L is available in the literature. In the absence of pressure 
and density effects {i.e. for is = 1 etc.), it is given by the “Rigorous” curve in Fig. I(a). (The curve 
is the sl = 1 curve in Fig. 3 of reference [14], and the E = 0 curve in Fig. 2 of reference [I]. The 
present &,, UU symbols are denoted in these references by Sz i12, Uf and /3, (Tf - T&8. The curve 
is plotted also in a number of the references cited in reference [! 41. } In Fig. I (a) we furthermore plot 
Pm as obtained by the present method in the I, 111, Ilk, 110 approximations fusing the approach 
indicated in (4.12)]; in Fig. l(b) we plot the parameter Q; in Figs l(c) and (d) we plot the parameters 
ae, ai and w, respectively. In addition, we show a plot in Fig. l(a) of ,k3, in the A” approximation 
where, using (4.110, i), A” was assigned the-fixed (independent of eU) value 

A” = -2 == 1 - A (4.21) 

It will be noted from (4.1 lo) that as @, -+ 0, also D -+ 0, while as EM, --z 1, Q + co. For Q, 4 1 
(and for 8 not necessarily 1) the rigorous ,kL behaves [as is readily verified from reference [l], 
formula (31)] as 

(Bm = (q[J2)1/” z 0.707 92” (4.22a) 

while (4.110) furnishes, on anticipating that “2/, $ 1 implies 

Q< I _” (4.23a) 

the relation 
d&u < 1 : 52 = (6 a0 Pu)“3 (4.24a, 25a) 

From this and (4.13) it follows that in the first approximation (a0 = 1) 

/!3a = (3/4)“6%;‘” = 0.953 g;‘” (4.24b) 

In the II1 approximation, anticipating, for qU <i 1, also 

w3 6 1, fft/ai’ 4 1 (4.23b, c) 

(4.112) reduces to 
10 = aj?P?/, (4.25b) 

= ~#~a~~~~ (4.25~) 
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while (4.111) becomes 

G. HORVAY 

By virtue of (4.25b) this gives 

12 = (Q/Y%u)[l + co”ai/ao] 

w = (ao/5)l12 

Inserting (4.25e, 24a) into (4.25~) and noting (4.13), one finds 

a0 = 20.3 @ti5, Q = 4.95 @i15, /3 = Q/2/(20) 

In the II+ approximation, (4.111, 1 It, 25a) lead similarly to 

(4.25d) 

(4.25e) 

1.12 %3/b 21 (4.25f, g, h) 

12 = .Q/Y%U = Qf.0/a2ZU, 17.5 = (Q/Y%,)[l + w3’2ar/ao] (4.26a, b) 

w = (1 lao/24)2’3, a0 = 11.11 %‘I/“, LJ = 4.05 @5/e 

U 

(4.26c, d, e) 

,f3 = Q/l/(24) = 0.827 ‘%z’” (4.26f) 

while in the IIll, approximation (4.111/,, 112/,, 25a) give 

(n + 1)(3n + 2)/n = G/Y@, = sZOJ/ai%U (4.27a) 

(2n + 1)(3n + 1)/n = (Q/Y%,)[l + f.O(n+l)‘na~/ao] (4.27b) 

3n2 - 1 
l” = (n + 1)(3n + 2) 

ao] n’(n+lf = [(3nZ - l)(n -t;)2(3n + 2)2 %;I n’@n+~ (4.27c) 

(4.27d) 
(n + l)2n+L (3n + 2)2n+1 

(fP%)n+~(3n2 - 1)” 

(4.27e) 

If one regards a0 as a fixed (independent of aU) constant, as in (4.21), then (4.25b, d) are replaced 
by 

12 = Q/Y@, (4.28a) 

and this, in conjunction with (4.13, 24a) yields 

,L3 = Q/d24 = 4(uc,~‘u/2/6)1’3 (4.28b) 

One notes from (4.24b) that, in first approximation, Pm rises at small undercoolings as %i’3, in 
contrast to the rigorous rise @‘:/“, equation (4.22a), whereas in second approximation, keeping ag as 
a ,jixed (independent of a’,) constant, it rises [see (4.28b)] as qIu ‘ia. On the other hand, permitting 
variation of ao, the 111 approximation (4.2531) furnishes an exponent 3/5, the 111 approximation 
(4.26f) furnishes S/9, and the general II 1/n approximation (4.27e) furnishes the exponent (2n + I)/ 
(4~ + 1). Thus, the smaller k = I/n, the closer we get to the rigorous asymptotic behavior qL13; 
but the smaller (inferior) the multiplying numerical coefficient becomes. Thus, the asymptotic 
formula (4.26f) of IIb is superior to the asymptotic formula (4.25h) of 111 only for aU < 10A3, 
whereas taking also the nonasymptotic behavior into account, Fig. l(a) reveals that 11~ is persistently 
better than 111; likewise 110 is persistently better than IIh, * the one-term asymptotic formulas (4.27) 
are seen to become less and less adequate as n = I/k increases. 

At the high end of the spectrum the approximations III, IIt, 110 are seen to be valid up to 
%L = 0*082,0.165,0-29373, respectively; at these aU values, a;’ passes through a zero. (Symbols @‘t, 
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and UJ are used to denote the undercooling appropriate to a; = 0. The dagger is appended also 
to the corresponding Q, UJ, BOO values.) We have not explored what happens to the II approximations 
beyond %‘t,. However, we note that in the 11~1 approximation the equations (4.20), at @L, become 

Efi3 + 3G + 61R + 6 = LPI%,, 
7 

3522+!?52+ 11= ai@u 
1 + a,llw 

2!2+1+~mnw I I (4.29 * 0 I, II ) 

352$- 6 = ‘I@’ 
I + ailw 

1 +L&_$122 ln2 w 1 
It is seen that these equations are satisfied by 

,, 
a0 = w = w-1,; = w-1,; ln w _= 0 (4.3Oa) 

(4.3Ob) 

In other words, w also passes through a zero at &‘f (and beyond @‘t, it, presumably, becomes complex). 
The zero of w is weaker than the zero of a;, so that w-la; ln2 w remains a finite number. Solution 
of (4,29”9 ‘) yields, for 8 = 1, the pair of values 

4%; = 0.29373, sZ+ = 2.58585 

and the corresponding & is obtained from (4.13) in the form 

(4.31a) 

I, 110: /3t, = (%‘tQ+/2)i’s = O-61626 

For comparison we also mention that for aU = O-29373 one finds the rigorous value 

(4.31b) 

Rig : &, = 0.6150 (4.31c) 

Thus, the 110 and I approximations agree at %L, and differ from the rigorous solution, in regard to 
the value of &,, by 0.2 per cent. Since 110 and I furnish values, which for %‘u < %‘,t and %, > q/‘/s 
respectively, are indistinguishable on the graph paper from the rigorous solution, we have not 
concerned ourselves with an examination of the behavior of 110 in the range @i < 9, < 1. Rather, 
we have decided to adopt 110 as the approximate solution appropriate for 0 < Q?/v, < %J, and I as 
the solution appropriate for ‘?%!I, ;Z @, < 1. 

For U, close to 1 (more specifically, for Sz 9 1) the I approximation furnishes, on the basis of 
(4.29”, 13), the estimate 

3UU 
4l+4=j-q- 1+;+; 

U ( > 
(4.32) 

In Table 1 are tabulated, for l = 0*2,0*1,0, - 0.1, values of &,, Q, a;, w vs 4!lU in the 110 approxi- 
mation when er, < 4$ and values of &, Sz vs VU in the I approximation when 0.1 < U, < 1.0. 

In what has preceded we have determined all the leading coefficients in (4.1); this involved deter- 
mination of the solution of the non-linear algebraic (or transcendental) equations (4.11) [or (4.20)], 
as illustrated in Fig. 1. AN further coe$cients qf (4.1) are determined from successive linear equations 
[listed in (4.21, 2~) and (4.20) or (4.18)], not more than 5 at a time. fJVe regard the j3 coefficients as 
determined by the v coefficients through (4.4).] Thus, in the 111 approximation we solve for ~112 in 
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Table 1. FutdamentaI parameters 

Method 
110: %u 

E I: u, B Q ‘U CL”” 
~--__- 

II0 m:- 0.1 10-5 0.02222161 0.0138039 0.0133877 0.956769 
lo-912 0.02403373 0.0240356 0.0217249 0.928582 
10-4 0.0272963 1 0.0415366 0.0347012 0.885537 
10-7/z 0~01313S5 0.0711406 0.0543238 0.823713 
10-3 0.0235575 0.120852 0.0830089 0.740848 
lo-s/z 0.0422698 0.204672 0.123112 0.636522 
10-z 0.0766732 0.3 $9853 0.177966 0.509755 
10-W 0.142683 0.618917 0.246427 0.353296 
0.08 0.245890 1.04042 0.297684 0.191937 
0.10 0.283321 1.19517 0.302256 0.147462 
0.12 0.318762 1,3$584 0.299373 0.110373 
0.15 0.370925 1.56834 0.280879 0.0662796 
0.20 0.456634 1.93778 0.2C6161 0.0197506 
0.25 0.543725 2.31231 0.0707413 0.0a173772 
0.30638 0.61987 2.7569 0 0 

II0 0 10-j 0.02222161 0.0138039 0.0133877 0.956769 
10-912 OOUO3372 0.0240356 0.02 I7249 0.928582 
10-4 0.02729628 0.0415364 0.0317013 0.885537 
10-7/z 0.0131354 0.0711397 0.0543243 0.823714 
IO-3 0.0235568 0.120847 0.0830110 0.740849 
1()-5/z 0.0422660 0.204649 0.123421 0.636523 
to-2 0.0765816 0.349728 0*178001 O-509728 
10--3/z 0.142548 0.618184 0.24 6539 0.35303 1 

0.08 a245226 1.03690 0.297593 0~190609 

110 + o-2 10-5 0.02222161 0.0138039 0.0133877 0.956769 
10-9/z 0.0?403373 0.0240356 0.0217249 0.928582 
10-4 0.02729633 0.0415367 0~03~7011 0.885537 
10-712 0.0131356 0~0711414 0.0543233 0,823712 
IO-3 0.0235582 0.120856 0.083N68 0.740846 
lo-5/” 0.0422736 0.204696 0.123103 0.636521 
10-3 0.0766249 0.319979 0.177931 0.509782 
l&3/9 0.142818 0.619653 0.246316 0.353563 

0.08 0.24656 1 1.04398 0.297776 0.193276 
0.10 0.284036 1.20059 0.3 12780 0.149367 
0.12 0.320204 1.35364 0~330704 0.112838 
0.15 0.373 180 1.58088 0.284523 0.0694 170 
0.20 0.463809 1.96276 0.218661 0.0229372 
0.25 0.550686 2.35828 0.0990553 0.02315913 
0.32196 0.69297 2.9830 0 0 

0.1 0.220276 1.16452 
0.2 0.381733 1.74864 
0.38635 0.69297 2.9830 
0.4 0.717969 3.09287 
0.6 1.16158 5.39711 
0.8 1.98634 11.8330 

0.1 0.23 1884 I.21375 
0.2 0.408128 1.83?25 
0.33702 0.61987 2.7569 
0.4 0.771090 3.27019 
0.6 1.25319 5.75848 
0.8 2.15355 12.7539 
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Table l-continued 

IIo: 4, 
Method E I: uu B n w a0" 

110 0 0.10 0.282020 1.18984 0*301730 @X45579 
0.12 0.3 17345 1.33822 0.298027 0.107947 
0.15 0.36872 1 155612 0.277153 0.0632290 
0.20 0.452595 1.91368 0.192958 0*0168341 
0.25 0.537104 2.26849 0.0445722 ~03gO9378 
0,28 0590286 2.48410 0*0483140 @06158509 
0.29373 0.61626 2.58585 0 0 

0.1 O-252069 l-27078 
0.2 0,439311 1.92994 
0.29373 0.61626 2.58585 
0.4 0831244 3.47982 
0.6 1.36262 6.18912 
0.8 2.35431 13.8570 

II0 - 0.1 10-5 0.02222161 0.0138039 0.0133877 0956769 
lo-w. 0.02403372 o-0240355 0.0217249 0928582 
10-4 0.02729626 0.0415362 0.0347014 0.885537 
l(ym 0.0131352 0.0711389 030543247 0.823714 
10-3 0.0235561 0.120843 0~0830131 @740851 
10-W 0.0422622 0204625 0.123430 0636524 
10-3 0.0765690 0.319632 0.178037 0~509701 
IO-3/2 0.142414 0.617454 0.246651 0.352767 
O-08 0.244569 1.03343 0.297503 0189292 
0.10 0.281032 1.18460 0.301201 0143717 
0.12 0.315953 1.33074 0.296665 o-105559 
0.15 0.366567 1.54422 O-273342 0.0602634 
0.20 0.448683 lmO41 0.179250 0.0141811 
0.25 0.533826 2.22669 0.0227865 0*03288175 
0.28310 0.58888 2.4499 0 0 

I 0.1 0.2726?9 1.33788 
0.2 0.476800 2.04634 
0.25479 0.58888 24499 
0.4 0.91 C696 3.73215 
0.6 l-495-6 6.71 I88 
0.8 2.59938 15.2028 

- 

terms of ~11s from (~-1’2) = 0 of (4.2:); then from (~-1’2) = 0 of (4.2~)~ (TO) = 0 of (4.20,), 
<Gfi> = 0 of (4.2$ (~1) = 0 of (4.2;) we solve for VI/~, al/z, 81/z, S;;,; and so on. We shall give in 
Section 7 the numerical values of these coefficients for nickel (E = O-06) for VU = 0.025, 0.25 in 
the 110 and I approximations. 

5. SOLUTION FOR T < 1 
We assume momentarily that A(k) in (3.6) have constant prescribed values 

A = Q~, A” = 0;; = 1 - a,,, A”’ = A”” = . . . zzz 0 (5.1) 

Then, in the light of the initial conditions (3.11) and noting (3.8), we seek solution of (3.15) for 
T g 1 in the form 
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W = 1 + bnlr 1~1 + bna T%+. . ., w = drl #I + drz +‘a + . . ., w” + d;; T*I + . . . 

@C = +I TPI + c7,,z Tp2 + . . ., @F = fsl 7’1 + fs2 7% + . . ., 1 = 1112 T1” + , . . > 
(5.2) 

Noting also (4.3) we stipulate 

26nl<nz< . . . . O<rl<rz< . . . . O<pl< . . . . O<SI<... (53a,b,c,d) 

[The condition nl 3 2 arises from the requirement @F(O) # co.] Introducing these expansions into 
(3.15), the vanishing of the lowest T powers in (3.15) [~f1+8~-1 and T%-~I in (3.15o), +1--l and 
7d1-r’~ in (3.151), A-rl and ~%-l in (3.15~)] implies, respectively, 

2rl - 1 = 0, pl - 3; = SI, s1 = r1 + n1 - 1 (5.4) 

[If rl were zero, then the first line in (3.150) would furnish Tslvl terms, the others would furnish 
higher terms, and the coefficient of ~81-1 could not be made to vanish. Thus we cannot admit 0 < rl 
as a possibility, but must insist on the stricter relation (5.3b).] 

From (5.3, 4) it now follows that 
rl = +, p1 - 4 = s1 = nl - 4 > $ (5.5a) 

&o(O) = 0, &F(O) = 0 (5.5b, c) 
and from (4.3b) also that 

. . . 
B(O) = 0 (5.5d) 

The value of RO has been left, so far, unspecified. If we choose 

Ro=Rn, i.e. Bn=B!a=l (5.6a) 

then by (4.3a) 
&(O) = 0 (5.6b) 

This implies that 
n1 > 2 (5.6~) 

On differentiating (3.150) we next find 

&P(O) = 0, Sl > 2 (5.7a) 

and from (4.3b) . . . . 
W(0) = 0, nr > 4 (5.7b) 

Similarly, one finds that all derivatives of %F, W vanish at 7 = 0. Tt follows that W, is a radius C$ 
neutral equilibrium of the nucleus. Once it is of this size it cannot grow or shrink without external 
disturbance. So we are prompted to choose for initial radius 

Ro>R,, i.e. ~%“,<Wo=l (5.8) 

Condition (5.8) implies that in (5.2) we must set 

nl = 2 

in order that we may satisfy (4.3a) at T -+ 0 by choosing 

(5.9a) 

From (Ma) we correspondingly obtain 

90 --w, 
29: 

= j>a(l -W,) 

p1-&=s1=$ 

(5.9b) 

(5.1Oa) 
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and from (4.3b) 

tl2 = ; (5SOb) 

These considerations lead for 7 < 1 to the choice 

g= 1 +b2?+b7,2r7’2+b4r4+ . . . . w=dl/z~~‘~+d~~+ . . . . w’ = d;,, 4’2 + d;r + . . . 

&‘F=f3,2+2+f2.2+ . . . . @c=c2T2+C5/2+t2+ . . . . l=11/2+2+11T+ . . . 

A=ao+al,2T1’2+ . . . . A”=a;;+a;;,+2+ . . . . ao+u; = 1, 
,I 

u1/2 + a,,2 = 0, . . . 

(5.11) 

(We restrict ourselves to the second approximation.) The placement of (5-l 1) intO (3.15) kdS to 

the equations 

~<~C2--fs,2 [&Z11,2])+~‘2<~c5,2+(c2--fi) [g+li2] 

-f3,2 [+ $3 -$l~+~&])+ +<C3 + (CC/2 -f5/2) [$- 311/2] 

+ (c2 -fi) [x (2 - ;J - 31lf 154,2] -f3/2 [s (- $ + $I) 

- 31212 + 3011 1112 - 751,3,, I> + . . . = 0 (5.12;) 

- g I~ + 151:,, I> + . . . = 0 (5.12:) 

+2 --xv2 [l; 

I 

f2 a0 +f3/2 w2 - 
dl/z } - { I” + f3/2 [uo *2 + a0 $])++p7~ 

+(c2-j42_~;*)+f3,2(;~_l~)] _{f~,,~o+f2~~2+fs~2~1}- 0” 

+ v; uo +f3/2 m/z) + ( I” ( I” + (f3/2 ao) (z-$j +()“()“)+ . . . =0 (5.12~) 
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(k + l)(k + 5) df,2 + (k + “2’” +J do + (1 - k) -$ - 2k 
I 

+ [ I” [ I” + [@l/2 + aO$&+ls) d:,,l 

k+5 
7d1,s-&] +[l”[l”)+~~,~~(k+4)~2<[uod~,~l[(ki l)(k+2)&+6)rtl&, 

+ 4 (k + 1) (k +3 (k + 6) d;,, + i (k + 1) (k + 6) d3/2 

df + a k(k + 1) (k + 6)G + (1 - k)$ - (1 - k) (2 - k) -’ 
l/3 dfu 

- 2k2 g2 - k(k + 1) d1/2 
I 

+ [ 1” [ 1” + [(w m;- aOfi/f3/2) &I (k i- 1) (k + 6) d;L,z 

+ 4 (k + 1) (k + 6) d1 + (1 - k) g2 - 2kj + [ 1” [ 1” + [ (~1 + a,sf$ + ao $1 d:,,] 

k$dl,2-+-j +[]“[I”)+ .s. =0 (5.12;) 

Expressions (5.11) can be solution of (3.15) only when each (G) in (5.12) vanishes. Because 62 
is a fixed quantity (5.9b), and since the fk, bk coefficients are related by virtue of (5.1 l), (4.3) by 

f3/2 = - 32 %d b7/2, f2 = @!sB'n bs - 12 Lb4 + (1 + c/6) b;] @d, 

f5/2 = - ‘2’ %d bg,2, f3 = - 20 @d bg, . . . (5.13) 

the coefficients bk may be regarded as known quantities, and the equations (5.12$), (5.12~), (5.12:); 
j = 0, 1; k = 0, m, 2m constitute six sets of equations in the six sets of unknowns Cn, In, fn, dn, 
a:, di. 

From (5.12~) we find, noting (5.9b, 16a) and Fig. 2 that the leading coefficient of the %F series 

fw = 2bz 

is a positive quantity. In the I, 110 approximations it has, by (5.16a, 19, 25) the value 

I: fm = 2bzlNd2) + RdCV-~~ 

II,,: f3/2 = 2b2/(# + X1/(2/A’-)) 

The vanishing of (T) in (5.12:~ 1) implies 

CO = 0 

11/2 = d/(X/2) 

On taking the difference of the (G’s) expressions in (5.12$ 1) we next obtain 

(5.14a) 

(5.14b) 

(5.15) 

(5.16a) 

& c5/2 = - ; f3/2 ,?f- < 0 
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FIG. 2. The degree of inconsistency, 4, of the ascending power series solution I&. 

i.e. we find that, according to the present model, the nucleus center temperature begins to decrease 
as the surface temperature starts to increase, in violation of the second law of thermodynamics. 
For this reason we are prompted to assume that l(7) is a completely determined function 

I(T) = 1i/.,2 7=, (if2 = 4(X/2), Ii = 13/2 = . . . = 0 

This permits us to discard (5.12;), and we obtain from the relation (5.12’j) that 

(5.16b) 

a/2 99 --_- 
A2 loY - ; .\/(2+; (5.17a) 

where, in the light of (5.28,29), ~5/2 is seen to be a positive quantity. In the I, 110 approximations its 
value is 

I: cg/2 = 9.9 s _+ 
_KW 

110: 

The time dependence (5.16b) of Z(T) Ieads to the surface gradient 

HJJ%%&o = (2 + zf(2/ST) (UP - UC) (5.18) 

of the tern~ra~~ (3_6b), which is consistent with the infinite gradient (3.8) at T -+ 0, and also with 
the expected behavior (+ 0) at 7 9 1. Equations (3.6b), (5.16, 17) constitute a significant improve- 
ment over former approaches that regarded the frozen nucleus as isothermal. 

The equations (4+k’s) = 0 of (5.120) create a greater dilemma. If we restrict ourselves to the first 
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approximation, A = 1, A” = A”’ = . . . = 0, and correspondingly retain only (12:), then 
(7) = 0 furnishes 

as = 1: dt/z = l!G (5.19) 

But if we permit both A and A” terms to appear and, accordingly, retain the three equations 
(12:~ k* sk), then it is found that the lead-off terms in these equations 

(T) = 0, (G+k’s) = 0, (G+k) = 0 (5.20”~ ‘9 “) 

respectively, are inconsistent; they cannot be solved for dip, d,‘,‘,, ui. [The implication of this is: at 
small times (3.150) cannot be solved in the form of (5.1 l), by restricting oneself to expansions in 
half powers of T; logarithmic terms or perhaps other types of fractional powers should also be 
included; this question has not been explored.] 

One may define a measure of the inconsistency. We may vary d and d” in the three expressions 
(5.20 ‘v ‘* “) [we omit the subscript 4 of dl,z, d,‘,; in (5.21-27) for the sake of more convenient writing; 
the ratios p”, p’, p” are not to be confused with the symbol p of density]: 

a,, d”(2 - l/d”e) 
-YE - 

a0 d(2 - l/dz) = - P0 

ao d”l+k(2 + k/2 - l/d”“) - Y- ~__~__. 3 - 
a0 d1+“(2 + k/2 - l/d2) 

p, 

a0 d”1+2k(2 + k - 1/d”2) ,, 
- -’ = &+2k(2 + k _ 1/d2) 

a0 
=-P 

and determine d, d“ from the requirement 

J(d, d”) = ff$ I I = minimum 

(5.21”* ‘* “) 

(5.22) 

We regard this choice d: 2’ (and the corresponding ratio cie/rii E i;“) of d, d” (and co/u;) as the 
least inconsistent choice for the given k, and define the minimum degree of inconsistency as 

S EY(& 2’) = [I - p’/P’]min (5.23) 

Clearly, in order that the ratio &/a; be positive, it is necessary that d, 2” straddle the value l/2/2. 

The value greater than l/d2 will be labeled d: the value smaller than l/d/2 will be labeled d”, in 
accordance with our convention in (3.6a) and elsewhere to let w (and thus d) be associated with the 
dominating temperature term. One finds that 9 is minimized by 

B = 5 + 4 k + (9 + k + k2/4Y2, d*“2 = 5 + B k - (9 + k + k2/4Y2 1 
2(4 + k) 

-__ 
2(4 + k) 

(5.24) 
A k 34k2 

i 

k 
d=l--+++ . . . . 

k212 
d*“=& 1-24+++... 

and that 

CiO BO 3k 74k2 
--= -;TI=1+8+123+ . ..) 
1 - rio 

2 = 1.4432k - 1.135lks + . . . 
a, 

For k = 0 these relations specialize to 

(5.25) 
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In Fig. 2 we plot &2, &, SO&,’ and2 vs k. It is seen that as k + 0 the inconsistency disappears. 
This then indicates that, in contrast with the general case of IIk, an ascending power series solution 
in +, nevertheless, does exist for the special case of 110. 

Once the solution (5.25) of the equation (T) = 0 of (5.120) is available, determination of the 
higher coefficients &, di, 0; of the 11” solution proceeds by the method of (4.15-17). Accordingly, 
(5.12:) must be replaced by 

ccl+ "C;'> + 73'2W3~2 + "c;:,>+ r2<“C2 + q>+ . . . = 0 

KC1 + “Cl In d + ‘Cy + “Cy In d”) + +2(‘Cs,2 + ‘Cs/2 In d + ‘C& 
1 

+ ‘c3/2 hl d”) + . . . = 0 

7(‘PC1 + ‘C1 ln d + g “Cl ins d + “C;’ + ‘Cy In d” + 4’ Cy h2 d”> 
(5.26”* ‘I “) 

+ 73/2(“Cs/2 + ‘CSIZ In d + 3 ‘Cs/2 In2 d + “C& + ‘C& In 8’ 

+ 4 “C& ln2 d”) + . . . = 0 

‘Cl = ) duo, “CI = 0 

‘Cat2 = ao $di f 5 d2 -k 2 -k (au2 -I- aof2/fa/2) 
t 

(5.27) 

'Cal2 = ao 
a’1 

3 4 $_ 6 d2 - 3 - 2 
d 

-t (al/2 + aofi/h/2)2, "cat2 = ao (id1 -t-d2> 

J 

‘C2 = ao 3 Q/z + 12 did + 6da + $iz - 2 2 + (all2 + aof2/&,2) 3 dl + 6 d2 + 2 
> 

i- (m+auz&+ao$){3d--~} 

+ (al/2 + aof2lfalz) f dl + 7 d2 - $ - 2 al + alp fi + ao 
h/2 

alp + mMfa~2) {WI + d2} 

As was pointed out earlier, in connection with (5.20), the equations (TI> = 0 of (5.26) are in- 
consistent; their solution (5.25) in the limit k + 0 must be determined in the fashion of (5.21-24). 
But once (5.25) is available and is introduced into the Cn, n 3 3/2, the remaining equations 
(7,) = 0, n >, 3/2 are found to be consistent. The parameters a& dl, d;‘; a;‘, d3,2, dj;,; . . are 
determined from (+2’, = 0, (9) = 0, . . as expressions in f2/fal2, fs,2/fa,2,. . . ; the latter quantities 
are then determined from (5.12~). In this fashion one finds 
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247 99 

f5/2 
405 + ifi R( 2/<*) - d2 

-= 
_-__ f3/2 615 + R/\/X 

-~ 110 : - 226 In 2 176 ln2 4 In 2 - 21 ln2 dl = [128 + + 21 [12 + 21 f2/f3,2 
.______. 

60 + 91 In 2 + 40.5 In2 2 

= - 2.5734689 - 0.0328557f” 
X3/2 

- d,, 

1 
= [22 + 65.5 In 2 + 38.25 In2 21 + [12 + 28 In 2 + 15 In2 21 f2/fip 

60 + 91 In 2 + 40.5 In2 2 

f2 = - 0.60180744 + 0.27091582fT2 

- al/z = ai;, = - 1.4819755 + 0.5324351 :f2 
f312 ’ 

d3,2 = 15~167308 - 3.748830;; + 0.997599f$ 
312 

h_ 1 1 a008373 + 2R .~~. ~___.._ 

f3i2 ~‘2 1.065632 + R/l/X 

f5p 
t 0.0886061 :r3/2 

d;;2 = 5.144726 - 2.509527& + 0.504992 j&i + 0.273480 ;T 
. x12 2 

- al = a;’ = 9.042587 - 6.074998$ + 1.522209,;; + 0.753757;$ 
31” 

f5,2 2.704046 + 9.9 X(dX) - (1.536703 + 1.838478 R) f2/f3/2 + 0*197916f;/f,z ~_~_____ _____ 
f3/2 1.175561 f R/z/.% 

The formula 

c3 
- = - T 2/(2x3) + y .y.c2 _ 

f312 

holds for both I and II; in fact, for all approximations. 
For the special case 

R=.rn=l 

we obtain 

(5.29) 

(5.30) 

(5.3 1) 

I: &/z = 0.707107, dl = - 0.473684, h/a _- - 0.080042, f3/2 = @707107b2, 

f2/f3,2 = - 1.042052, f5,2/f3/2 = 5.975951, &/Z/,$2 = 10.34210, 

c3/2/f3/2 = - 33.3287 1 

(5.32a) 



THE TENSION FIELD CREATED BY A SPHERICAL NUCLEUS 

110: a0 = aij = 4, -- al/2 = a$ = - 2.030291, - al = a; = 22556996, 

Q/z = l,d;;3=&, dl=- 2.539633, d;; = - 0~880804, da/s = 20.749393, 

d;;% = 10*312385, _f3,n = 0.686291 bz, fiifj,z = - l-029826, 

,f5~2/53/2 = 7.487628, @,/21f3/2 = 10.33692, c3/f3,2 = - 34.2851 

and by (5.13) 

221 

I (5.32b) 

I: 
bq 9d,W, + 0.736842 

b7/2 = - 0*0808122;& bz = 
12 %‘dd 

bz, bg/z = - 0*268294q$ 
d 

(5.33a) 

110: 
bq f@,W, -t- 0.706761 

b;/s = - 0.0784333 $, bz = __ 
1246 

bz, bg/2 = - 0.326266;; 

(5.33b) 

We could, if we wanted, adopt an approximate solution to the general 118 problem at small times, 
using the least incompatible values represented in Fig. 2, and then determining the rest of the dn, 
di, an coefficients from the higher equations (r*> = 0 in (5.12;). However, in the light of the avail- 
ability of the accurately determined, simpler, and-by Fig. l-much better 110 solution, there is no 
incentive to carry out such computations. All our work, henceforth, will be based on the I and 110 
solutions. 

The closeness of the I and 110 expressions (5.32a, b) and (5.33a, b) offn and b, suggests that the 
ascending solutions I, 110 are probably very good representations of the true solution. 

We list below the pertinent expressions also in the “simplified” I approximation when the 
additional approximation is made that the nucleus is isothermal: 

UC = UP (5.34) 

Then the inside equations (2.20), (3.151), (5.121) are to be omitted; in (2.19), (3,15B), (5.12~) the R 
terms (which represent the UC effect) are to be omitted, and (5.32a), (5.33a) are to be replaced by 

dlJz = l/-t/2, dl = - f, d3/z = ll(t/2)/24 -l 

&S/Z = (~‘2) bz, fzlf3/2 = - 11~2.1 .f5/e,&/2 = II/l2 

42/2 bz bq %!uSf?n -I- 1 
bTiz= -35u?/il, Gz----.-- 

t 1 

‘1 -c f b 111/2 b2 
(5.35) 

12 “?1,1 2 2, bw = - 189 c 
i 

d J 

6. CRITICAL RADII 

We have introduced previously-in (2.13)-a critical radius, the nucleation radius SZLn which, 
according to (5.8), delineates the initial nuclei sizes for which growth will or will not occur. Another 
critical nucleus radius 

~%r> = 1 + b2 7; + b;,i! T?? + bq T,” + . . . (6.11 

characterizes the growing nucleus at the instant TV at which the inflow velocity (for l > 0, outflow 
velocity for E < 0) is a maximum. By (2.7) the inflow velocity is largest at the freezing front, where 
its value 

- UF = EA (6.2a) 
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reaches a rn~urn at time rg for which 

ii=2bz+;b7/#2+ 12ba++;++ .,. =O (6.2b) 

Since according to (5.9b, 13, 14) 

8 bz -- -= 
35 bT/s RdWf) + dc2 + $ + . . . 92d = rn312 f?Ld 

112 

the solution of (6.2b) leads to 

2 bz + 12 bq ~2; + y bs/z r:12 4 . . . 
213 

= m’ *z/3 
a 

(6.3a) 

1 (6.3b) 

(6.4a) 

6 b4 Tzjb2 = smallest term (6.4b) 

I 

213 63 ha/z 
, for 3 g 7;1 

I I 
5’2 = smallest term (6.4~) 

The (6.4b) expression of m’ is based on the observation that the smallest term in the { }s/s expression 
is, in most of our range of interest, the 6bv,/bz term; and in a semiconvergent expansion it is found 
most expeditious (cf. Lanczos, p. 5 of reference [15]) to carry the expansion up to the term preceding 
the smallest term, and add on the smallest term with half weight. The expression m%i’B is a first 
estimate for TV; it may be improved by multiplying this by the correction factor { }2’s into which 
the foregoing first estimate is first inserted. Roughly, we can say, when K =J? = 1, that 

+ro = 2’ %zi3 (2’ = a trifie larger than 2)$ t6.4d) 

Further critical radii .%%I [or B m; see (6.7, S)] and Bc relate to the condition of maximum negative 
pressure and zero pressure at the front, respectively. The pressure in the liquid may be written, by 
(2.8b, 22), in the form 

At the front 6 = W, using (5.1 I), this becomes 

(6.5a) 

Calculated curves for-g’, 4, &, in the case of nickel, are shown in Figs. 4-9. W starts out with a 
large positive value at T = 0, passes through a zero at rV; then, depending on the imposed under- 
cooling U,, it may (or may not) fluctuate about 0; finally it approaches zero through negative values. 

$ Quite a bit larger than 2 for large undercooIin~. 
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Ensuing possibilities for PF are sketched, for the case e > 0 (to which we will, henceforth, restrict 
ourselves), in Fig. 3. Curve a illustrates the case of excee&zg& Zurge undercooling, when in (6Sa) 

(2 + •~2}~~ z k(O) [.& H&}] (6.6a) 

In this case the tension at the front, - PF, increases up to - pnz, at tm, shortly before tv, and then 
it decays slowly to - pm = - 1 atm, passing through the zero value at some large time to. Curve b 
illustrates that case of large undercooling where the maximum, - pm, of - pp near tv does not 
quite reach the initial maximum - PM. [Subscripts m and M are used to refer to the maximum 
tension condition in accordance with (6.6a), (6.6b); since 7 m nearly coincides with TV the simpler 
estimates 

Trn N TV, -jm N -f&= -+b+ 2s(l+ E/4)@ 

may be adopted for this case.] When 

(2 + E/2)& <&(O) 

then the initial tension is the maximum. In this case, therefore 

(6.7) 

(66b) 

6-W 

in contrast to (6.7), this result is true, as are also (6.14) and (5,9b), in all approximations (I, II, etc.)!! 
Conditions (6.6a, b) may be stated also in the form 

(1 + +)b& 1 + 2 b4 
.f’2 + 4 - 7; + . . . 

bz I 
b : 

(1 -!- d)b& [ ] < : 

atm 

FIG. 3. Qualitative behavior of the front pressure with time for various degrees of undercooling: 
vf - Tm)a ’ (Tr - Tmh > Kf - T,)c > (r, - TOOh. 

ELM.-P 
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Clearly, for E > 0, the maximum negative pressure always occurs at the front, .$%’ = 1. [For 
E < 0, in the case (6.6a), the maximum positive pressure may occur slightly ahead of the front. 
Formulas (6.7, 8) also hold for E < 0.1 It is noted, by (6.8b), (2.16a), that/& is negative only when 

In other words, there is a least initial radius, R& which must be exceeded (at a given undercooling) 
in order that PM be negative. Curve c in Fig. 3 illustrates the case of moderate undercooling where 
RO > R*,; it is noted that for this case TV, the time at which the front pressure crosses zero, is barely 
larger than rV. Curve c’ illustrates the case where 4 has several fluctuations about zero. [For quanti- 
tative illustrations, see Figs 8(a), (c) and Fig. 9(c).] 

Depending on the location 6 in the liquid, the zero pressure condition for E > 0 is reached at 
various times (it is never reached for E < 0); it is reached last at the front. Curve din Fig. 3 illustrates 
the case of small undercooling, where the condition (6.10) is disobeyed; here there is no rc. 

From the ascending series expression (6.5b) we find that 

-rc = m%f~/3 1 - ~ & + (5 + 4b2 + 6 b4 &:+ . ..I.‘, (6.1 la) 

is the time at which the front pressure passes through zero. The corresponding radius is 

W, = 1 + bz 7,” + b7/2 T;‘~ + b4 r,” + . . . (6.11b) 

This formula applies to cases of moderate undercooling, like Fig. 3 curve c or Fig. 9(b), curve 
T, - T, = 175”; for large undercooling the descending series formula (4.1) of W must be used. 
It leads to the expression for+F: 

fb =#oo - 4", F-1 
c 
1 +; - p1/2 7-1'2 - (2 + E)/31 7-l + ... 

I 

From this, one obtains 

(6.12) 

(6.13a) 

(6.13b, c) 

S’c = 2/3m 7, UB [l + p1/2 q u2 + . ..I (6.13d) 

Formula (6.13~) was stated previously, in a slightly different form, in equation (5Ob) of reference [l]. 
The extent z&, at time 7 = 0, of the negative pressure region is given by 

rM/& = & = &(O)& = 2~bs&0 = 1 +M&zo (6.14) 

At the interface S? the liquid pressure+F discontinuously increases to the solid pressure value 

#S =jF +#stas +fk%e. =jF + ;a2 + 4 (6.15a) 

6’ = o’Rog/u2y (6.15b) 

AttimeT=Othisis 

/Q(O) = fiM + 24’ (6.16a) 
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and may be a very large negative quantity, approac~ng (6.8b) in magnitude if fin dominates; 
alternately it may be a very large positive quantity if 24’ dominates; at time 7y it will have acquired 
the value 

fiSC%l) ==+m - 2&k; f 2a’/%l 

[cf. (6.7b)], which is usually positive. Then, with passage of time, +s subsides tobco, 

(6.16b) 
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APPENDIX. CAHN’S FOIWULA FOR THE D~~SSION OF BIG SERAPE DUE TO 
PRESSURE 

At the melting point, Tf (corresponding to ambient pressure pm), the chemical potentials PL and 
FS of liquid and solid phases must equal, and so must JLL + dpL and P,S + dps at TF = Tf + dT. 
But 

(3 = entropy). It fo~ows that 

(SL - 
dm dps 

Ss)dT=Y-r ww 
from which 

TF - Tf = pS-&Q 
r 

i.e. (2.5) holds. 
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Part II. Growth of the Nickel 
7. INTEGRATION OF THE GOVERNING 

Nucleus 
EQUATIONS 

In this section we apply the analysis of Part I to the nickel nucleus. We shall use the property 
values (g stands for gram weight), cf. (54) of reference [l]: 

E = 0.06, Tj = 1455°C = 1728X, pm = 1033 g/cm2 = 1 atm 

K = k = 0,165 cal/cmsecC’, I’ = 1.06~ = 8.92 g/cm3 

C = O-105 cal/gC”, c = 0.106 cal/gC”, K = klyc = 0.185 cmz/sec 

h = 74 Cal/g, h’ = 3.16 x 10s g*cm/g, o’ = 0.360 g*cm/cmz (= 255 erg/ems) 

K = Boltzmann’s constant = 1.41 x lo-i9 g*cm/deg (= I.38 x lo-l6 erg/deg) 

By (2.16~) 

R=Z-=I 

1 (7.la) 

I 
J 

(7.1b) 

[More frankly stated, the somewhat uncertain values of k, c near Tf were so selected that (7.lb) 
hold.] As underc;ooling temperature we first select 

Accordingly, by (2.16b) 

Tf - T, = 17.5 degC (7.2a) 

u u- _ 
0.106 x 1728 

74 
x 1% = 2.47 x 0.01013 = 0.025 

is the dimensionless undercooling. The nucleation radius (2.13) is 

2 x 0.26 x 2.47 1 4.55 x 10-8 
R, = 8.g2 x 3.16 x 1O6 u,= -u,- = 1.82 x 1O-6 cm 

(7.2b) 

(7.2~) 

For initial nucleus radius we choose 

RO = 2113R, = 2.293 x 10-G cm, L%~ = RGIRo = 0.794 

This exceeds the least Ro value for which tension may arise [see (6.10)], 

(7.2d) 

- ‘ecw]-l R, = [I - 8.g~‘~~1~o~10” x &&]-lRn = 1W0217Rn(7.2e) 
P+aYh vu 

by a considerable margin. 
The density parameter (2.16b) in the temperature is 

1 
Ua 

0.062 
= 

m 
x 2.47 x x 

981 x 3.16 x 106 
= 0.0176 (7.2f) 

and the scale factors for distance, time, velocity, acceleration, temperature, and pressure are 

r/f = Ro = 2.29 x IO-6 cm, t/r = Rilu = 2.83 x lo-11 set 

” . . R[& = u/Ro = 8.08 x 104 cm/s, RI%? = SIRi = 2.86 x 101s cm/s2 (7.3) 

(T - T,)/U = h/c = 698”C, pp = (x/R&/g = 5.60 x 107 g/cm2 = 5.42 x 104atm 
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Note that temperatures U and 4 are related [see (3.14)] by 

U = 1.06% (‘8% = 0.0235849, @a = 0.01660377) 

and that the dimensionless atmospheric pressure is 

+&, = 1033/5*60 x 107 = 1-84 x IO” 

while the dimensionless surface tension d’ of formula (6.15b) is given by 

(7.4a) 

(7.4b) 

0.260 
” = 5.60 x 107 x 2.293 x 10-G 

= 2.03 x 10” (7%) 

One must keep in mind an important restriction on our analysis: the phenomena described by a 
continuum analysis must not involve such small quantities (in space, time, mass) that quantum 
phenomena would also come into play. The distance and time scales 

Ro = 2.3 x 10-G cm, R,~/K = 2.8 X lo-11 s 

are indeed much larger than the radius O-5 x 10-s cm of the first Bohr orbit, or the travel time 
lo-16 s of an electron in the first Bohr orbit. When we switch, in (7.7), to an undercooling of 175°C 
(the largest undercooling we shall be concerned with), RO and R~/K will be replaced by 2.3 x 1O-7 cm 
and 2.8 x 10-1s s; these quantities are still a safe margin away from the atomic scale. 

After these nreliminaries we mav Droceed to the calculation of the narameters by etc., and /?k etc., 
of the ascending (5.11) and descend&g (4.1) solutions. We find, by (5.9b), that -- 

I, 110: 
VU 0.025 

bz = 3 vd (1 - W,) = 4 o.o176 x 0.206 = 0.1463068 

Hence, by (5.19, 25) 

I: ao= 1, dr/2=1/2/2; 110: ao=ai=+, dr,a=l, d&.=4 

and by (5.32, 33) 

I: b7/2 = - 0.712090, bq = 0.533198, bg/z = - 2.36412 

Q = - 0.473684, d3,z = - 0.080042 

$312 = 0.1034545, fi? = - 0.1078050, f5/2 = 0.618239 

a/2 = 1.069937, c3 = - 344800 

110: b7/z = - 0.691128, bq = 0.511109, bg12 = - 2.87494 

- al/2 = a;;, = - 2.030291, - al = a; = 22.55700 

dl = - 2.539633, dg/z = 20.74939, d;’ = - O-880804, d;;, = 10.31238 

j&2 = @1~9& fi = - 0.103404, f5/2 = O-751825 

cg/a = l-03792, q = - 344253 

(7.5a, 6a) 

(7.5b, 6b) 

1 

(7.5c) 

I 

(7.6c) 

are the leading coefficients in the ascending expansions ofL@, A, A”, w, w”, %F, 4%~ in the I and II0 
approximations. As in Table 1, and noting (5.5, 9), we next determine the basic parameters 

10: a0 = 1, Boo = O-08725369, Q = 0.6455999, 6, = &,/.(a = 0.1351513, 

vo = yo = 00235849 (7.5d) 
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110 : a0 = 1 - a; = 0.6032083, /3m = 0.1212497, G’ = 05321140, w = 0.2280827 

6, = /L/Q = 0.2278641, S: = w&, = 0.05197186, y. = v. = 0.0235849 (7.6d) 

for the asymptotic expansions (4.1). This takes care of (4.20) or, equivalently, of the (,1/s) = 0 
equations of (4.18). The (TO) = 0 equation of (4.18 “) in case of I, and of equations (4.18 o* ‘. “) in 
case of IIo, in conjunction with the (7-l/2> = 0 equations of (4.2:, 2~) and the relations (4.4) then lead to 

I: &2 = - 6.438463, h/2 = - 4.514249, ~112 = - 0*1073101, yi/e = - 0.1075819 (7.5e) 

110 : 8112 = 30.6502, 
r, 

---al/z = a112 = - 64.8562, &/a = - 68.7592, 

S;;, = - 106.705, VI/Z = - 0.0772225, y1/2 = - 0.0775994 > 
(7.6e) 

For Tf - TOO = 175 de& undercooling, Ro = 21i3R,, one finds similarly the basic parameters 

R, = I.82 x 1O-7 cm, iJd = 1.76, W, = 0.794, eU = O-235849, Qd = l%iO377 

b2 = 0.01463068, jrn = 1.84 x 10-7, 6’ = 2.03 x lo-4 
1 

(7.7a) 

and the scale factors 

R/f = Ro = 2.293 x 1O-7 cm, t/r = 2.83 x lo-13 s, RI& = 8.08 x 105 cmJs, 
. . . . (7.7b) 
R/92 = 2.86 x lOi* cm/s2, (T - T&J = 698 degC, p#zm = 5.42 x 10s atm 1 

The coefficients (7.5b, 6b) remain unchanged. The other coefficients become 

I: b7/2 = - OWO712090, bq = OGlO462378, bg/g = - 0.00236412, 

dl = - 0.473684, d3/2 = - 0.080042, fs/s = 0.01034545, f2 = - 0.01078050, (7.8a) 

fg = 0.06182390, &/a = 0.1069937, c3 = - 0.344800, 1 

a0 = 1, &, = 0.5087406, &’ = 2.194768, 6, = 0.2317970, v. = y. = 0.2358490, 

fli/s = - 1.326735, 8112 = - 0.722970, v1/2 = - 0.1840467, y1/2 = - 0.1988997 
1 

(7.8b) 

110: b7/2 = - 0~000691128, bq = OGXM40290, bg,z = - 0+X)287494, 

- alp = a;;, = 2.030291, - al = a: = 22.55700, dl = - 2.539633, 

d3/2 = 20.74939, d;’ = - 0.880804, di:, = 10.31238, f3/2 = 0*01004090, 
(7.9a) 

f2 = - 0.0103404, f5/2 = 0.0751825, c 512 = 0.103792, c3 = - 0.344253 1 
1 - a;, = a,~ = O-996257039, ,‘3m L 0.5163892, L? = 2.190297, w = 0.1035666, 

6, = 0.2357622, 8; = 0.02441709, y. = v. = 0.2358490, /31,2 = - l-05641 
I, 

- alp = ali = 0.136379, &,a = - 0.390083, S;;, = 23.0660, 

VI/Z = - 0.181321, y1/2 = - 0.196368 1 

(7.9b) 

For %“la = 2-1’3 and UU = O-25, O-025 we plot in Figs. 4 and 5, by method 110, and in Figs. 6,7 
and 8 by method I, the variation with time T of the auxiliary parameters A, W, w” and of the principal 
variables of the problem, W - 1, W, S?, @F, @CT. For small times (7 = 10-s to T N 0.1) the solution 
ascending in ~112 was used (coefficient of last retained term, e.g. b7p or 64, is marked on the curves 
in Figs. 4 and 5), for large times (T = 10s to 7 21 102) the solution descending in T1’2 was used 
(coefficient of last retained term, e.g. /31/z, is marked on the curves in Figs. 4 and 5). 

The intervening portion must be bridged by numerical integration. However, as the dimensional 
summary figure of the four calculations, Fig. 9 indicates, the I and 110 solutions are indistinguish- 
able, at U, = 0.25, in their small time and large time behaviors (presumably also in-between); 
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IO-' 12 slo 

FIG. 4. Ascending and descending power series solutions (in ~11s)~ terminated with the term that labels the curve. 
The asymptotic behavior is marked on the curves. Nickel, for a, = Q794, Tf - T, = 175 de&, method IIo 

solution* 

while at Er, = 0*025, I and II0 are indistinguishable in their small time behavior, and not importantly 
different in their large time behavior. For this reason a bridging of the small and large time regimes 
was undertaken only for the I calculations; even these calculations, programmed for an IBM 7094 
computer, constituted a considerable financial effort. The equations (3.17a, b), (4.3a), (3.150,, 
15$ (15~) may be restated, for the case (7.lb), in the somewhat more convenient notation 

2 = &, u=%F, V= *c (7.10) 
as follows : 

tiru Wa + 49’~ + 6~2 + 
(SP + 2Sw + 2w2)selw 

5 + l/E$_~/w I 

_ V2 + 2.%v + zws>w 
5 + llff@/w 

X 
21+12 l/412 
---?---S?-m+ 

W-+ 1)(5E -!- 1) 
/%P 

(7.11d) 
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IO I- I t I 

Fro. 5. Ascending and descending power series soiutions (in +F). terminated with the term that labels the curve. 
The asymptotic behavior is marked on the curves. Nickel, for .%& = 0,794, T’ -- T, == 175 degC, method 110 

solution. 

31/(21+ 1) 

(2 + l/Z + a/l+ = Lzz + (2 + I/l)0 (7Jlf) 

The integration was carried out by means of the FACE program developed by N. S. Mathias and 
D. N. Ewart. This is a very crude but convenient integration scheme devised for very large equation 
systems: the integration is based on the slopes of the pertinent functions at the beginning of the 
integration step (“Euler’s method”); no iterations are involved. As initial values the data furnished 
by the power series representation at T = IO-6 were used. The inte~ation step was IO-9 from 
7 = 10e6 to IO-s, IO-8 from IO-5 to 10-4, IO-7 in the next decade, and so on. We shah briefly refer 
to this as a OXlO step computation (O*OOl = 10-Q/10-@ = 10-*/10-5 = . . .), Thus, 80 000 integra- 
tion steps were performed between T = 10-e and 102 in each of the computations A, C, D, E, F. 
In computation l?, 0.01 steps were used. I: refers to the computation at U, = O-25; A, B, C, D, E 
to the computations at U, = 0*025. In ~ompu~tion C, we used equations (7.11) of method I up 
to r = 0.3691 (here %?Lc catches up with %I?) ; from here on we continued with simpi$ed method I 
computations. The latter expression is used to refer to the assumption (5.34) of isothermal nucleus. 
Computations D, E refer to cases where simplified equations were used right from the beginning. 
In computations A, 3, C, D, F we used initial vaiues accurate to about six significant digits (except 
for I which was chosen with ei~t-~~t accuracy); the critical item was &c of which only two coef% 
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lo-’ 10-I I2 510 T IO’ IO5 

FIG. 6. In the range 7 = 10-e to 10+3, a numerically integrated solution connects ascending and descending power 
series expansions. The asymptotic behavior is marked on the curves. Nickel, for W, = 0.794, Tf - r, = 175 degC, 

method I solution. 

cients, ~512, CQ were available. In computation E we repeated D, using initial values accurate to eight 
digits, determined in accordance with (5.35). In Table 2 we compare values furnished by A, B, C, 
D, Eat: T = lo-s, 0.1, 10 and 30.01 (B is given at 30-l; results at 30.0 were not printed out). It is 
noted that the /equation (7.1 la) is independent of all others, and its solution is I= 2/(7/2). Thus, the 
deviation of the calculated I (O-1) = (d5),‘10 21 0*22360609,1(10) = (d5) 2: 2.2360562 by A, D, E, 
F (0*22366221,2.2366221 by B) from the rigorous eight-digit value (d/5) = 2.2360680 is an indication 
of the discretization and roundoff errors accumulated during the integration process: the last three 
retained digits of the independently determined function /(T) (the last four digits for calculation B) 
are meaningless. In fact, we may ascribe the error in [(T) as largely due to discretization: since r(7) 
is monotonically increasing, its last digit is discarded after every 20 000 integrations (because the 
decimal point moves to the right): this eliminates a major share of the roundoff error. This conclusion 
is supported by the observation that a change from the 0.01 step B scheme to the 0401 step A scheme 
decreases the error by a factor of about 10. Thus we must assume that the interrelated quantities 
2, @F are also in error in their last two or three digits at the time TV is reached. Past 721, i@ and %F 
no longer increase monotonically, and thus we may expect a precipitous increase in their roundoff 
error. 

Figure 6 is based on computation Fin the interval T = 1O-6 to 103. Figure 7 is based on computa- 
tion A to T = O-3691 and on D from thereon; in Fig. 8 the computations A and E are compared. 

: The entries at 7 = 10-e are the input values. 
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I%. 7. In the range T = 10-s to 7 = 30, a numerically integrated solution continues the ascending power series 
solution. The descending power series solution is also shown. Nickel, for Wn = O-794, Tf - T, = 17.5 degC; 
method I solution to T = @3691 (crossing of %/c and 9/r), and simplified method I (assumption of isothermal 

nucleus) from thereon. 

The breakdown of the computations around T = 40 is due to the fact that in the expression (7.1 lc) 
of the acceleration 

(7.12) 

the last three digits, as explained above, are meaningless, while the first five significant digits cancel 
out in the subtraction. We illustrate this point by writing the above expression term by term for A, 
E, F, at T = 30.01, and for I: also at 7 = 1000: 

A: 0.43245288 - 0.43241861 - 0.00~3960 = - 0.~533 

E: O-424878 16 - 0.424853 18 - OGIOO3438 = - 0*00000940 

0.10745757 - 0.09270495 - 0.01640874 = - 0.00165612 

I 

(7.13) 
F: 

F: 0.13831634 - 0.13789611 - 0*00067059 = - 0.00025036 

Thus, at VU = 0.25, to which F pertains, we have enough retained accuracy to continue the 
calculations past Q- = 30 up to T = lOOO,$ at VU = 0,025 all eight digits lose significance by the time 

t By the time we reach 7 = 103 only the first two retained digits remain significant: L% - 1, .@, @‘, %‘F are 29-2, 
0.0163, - @04828, 0.229 by forward numerical integration, 29.8, o-0161, - 00*805, 0230 by two-term descending 
power series formula. 
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I III I III I III 
0 04 0 I 0.2 IO T 100 

I%. 8. Comparison of munerically integrated method I (curve A) and simplified method I (curve E, assumption 
of isothermal nucleus) solutions for the case of nickel, W, = 0.794, Tf - Too = 17.5 degC undercooling. 

Table 2. Comparison of numerical integrations 

7 Method W-l & b W @F 9c 

10-a A, B, D 001 2 14630680 0.0629261360 0.29261360 0.03706633 10 O~Or410664890 
E 0.0t214630682 0.0629261363 0.29261362 0.0370663743 

10-r A 002126694 0.0226028 0.136364 0*190011 0.02259370 0.02120870 
B 002 126808 0.0226094 0.136270 0.190056 0.02259526 0.02 120978 
D @02105275 0.0164497 0.0379543 0.257511 0.02423597 
E 0.02 105276 0.0164497 0.0379542 0.257511 0.02423597 

10 A 0.0596Ql5 0.02440567 - 0.04683999 l-35005 0.02591294 0*02590172 
B 0.0596645 0.02440518 - 0.04683883 1.35028 0.02591327 0*02590206 
C 0.0597611 0.02427862 - 0.04763372 1.38247 0.02591507 
D 0.0555399 0.02422323 - 0.04737602 1.38386 0.02584437 
E 0.0555399 0.02422323 - 0.04737603 1.38386 0.02584437 

30.01 A 0.141538 0.02395638 - 0.05467874 1.82470 0.02717979 O.Oa716887 
C 0.137920 0.02372120 - 0.0588093 1 1.91545 0.02712778 
D 0.132852 0.02368642 - 0.0583 I342 1.91356 0.02705416 
E 0.132852 0.02368642 - 0.05831649 1.91356 0.02705417 

30.1 B - 4.1 x 1033 - 2.8 x 1022 2.1 x 1014 - 3.3 x 10’ 1.4 x 1022 3.9 x 1oao 



HORVAY 

(4 (4 
FIG. 9. Dimensional curves, vs time i, of radius, velocity, front temperature, nucleus center$emperature, aCceleX’a- 
tion, front pressure, and effective solidification parameter of nickel, for 9% = 0.794, at 175 and 175°C undercoolings. 
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T = 30 is reached. To go beyond, it would be necessary to use (from the beginning) a more accurate 
integration scheme (e.g. modified Adams method, or the like), in conjunction with double precision, 
which allows one to carry 16 significant digits, instead of eight in the integrations. In retrospect, a 
more accurate integration scheme would have been desirable. However, since-for the task on hand- 
our computed curves gave valid results in the most important T region, the vicinity of 7y and slightly 
beyond, we did not undertake the task of repeating the calculations by such a much more expensive 
computational scheme. 

From Fig. 8 it is noted that, past TV, @‘p has a slight dip (because of the dynamic effect of large 
deceleration on freezing temperature); but when the surface temperature %F declines, heat may 
flow out from the hotter nucleus; thus Of’Lc may exceed @F over a small time interval. (The same is 
true also at UU = 0.25; but here the time interval of heat outflow is so small that no dip is seen in 
the plotted curve of %F, nor can there be distinguished any crossover by @c.) The fluctuation in 

%F, Fig. 8(b), brings forth a corresponding fluctuation of& about 0 [Fig. 8(a)]; this fluctuation does 
not arise when the simplified method I is used. 

Although Table 2 reveals a difference between entries according to A and according to B, the 
differences are too small to show up on the graph paper; the error due to the larger integration step 
manifests itself mainly in an earlier breakdown of the calculations. (See the meaningless entries in 
Table 2 that were printed out for B at T = 30*1).$ Comparison of the entries for D and E indicates 
that the inaccuracy past the sixth digit of the initial data is of minor importance compared to step 
size and roundoff errors. 

One might have endeavored to avoid the difficulty of canceling significant digits in (7.12) by back- 
ward integration of equations (7.11), say from T = 108, using the descending power series expres- 
sions for initial value determination. This was tried, but it was found that the cancellation of sig- 
nificant digits in (7.12) is even more serious in this case. 

On the basis of Figs. 4-8 we plot in Fig. 9, vs dimensional t, the dimensional curves R, k, k, 
TF - T,, TC - T,, pffl - pi, as well as an effective p, using the alternate definitions 

Pen = (9 - 1)/2(~‘/7) = (R - Ro)/21/$ &, = d(+) = &WC) (7.14) 

Thin long-dashed lines are used to indicate our guess for the missing connections between the I 
computations and the descending power series representations in the VU = O-025 case. 

In (7.15) below we verify for the case UU = O-025 and in (7.16), (7.17) for the case VU = 0.25, 
that the approximate formulas of section 6, based on chopped-of ascending or descending power series 
solutions in T112, provide acceptable agreement with the values read ofl the numerically integrated 
curves of Figs. 4-9. This is the most important conclusion drawn from these figures; it obviates the 
necessity of investigating other cases by means of numerical integration, but assures us that the 
results based on the section 6 formulas and the corresponding Fig. 10 provide quantitatively accept- 
able estimates. 

By formulas (6.8), (7.5) the tension maximum at the front, at time 7 = 0, is 

I, 110: -fiM = --+m + 2cbz = - 1.84 X 10-s + 0.01756 = O-01754, -PM = 951 atm (7.15a) 

The corresponding pressure on the solid phase [see (6.16a)] is 

I, 110: #S(O) =+zM + 24’ = - o-01754 + 0*00406 = - 0.01348, ps(0) = - 730 atm (7.15b) 

and the ,extent at this instant of the negative pressure region in the liquid [see (6.14)] is 

I, 110: rM/Ro = &I = 1 - p&&o3 = 1 + 951 = 952 (7.15c) 

$ The large powers of 10 that multiply the various entries may be attributed to the fact that the computer Cannot 
carry numbers larger than 103*, and once this is reached for any one variable, everything gets garbled. 
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r.oi f--to 

FIG. 10. Dependence on undercooling for, the case of nickel, of R,, Ro*, 2, if, R,, tw-tc, pM, rM, po, p,(O) p&), 
as determined by the formulas of section 6. 

In these initial values no approximations are involved. 
Maximum velocity is reached, by (6.4b), at time 

I: T1f = 0.1300 [l + 10*9T;]2’s = 0.150, tv = 4.26 x 10-12 s 

II0 : ~,j = O-1324 [l + 10*57~js’s = 0.153, tv = 4.34 x 10” s > 
(7.15d) 

whereas curve A of Fig. S(a) shows 

I: 72, = 0.18 (7.15d’) 

Velocity maximum and corresponding radius [see (6. I)] are: 

I: s9 v = 0.2926Tv 
[ 
1 - 8.52~;‘~ + “$ T: 1 = OGl40 x 0.585 = 0.0257, I& = 2080 cm/s 

110: k v = 0.2926rv 
E 
1 - 8-307;‘2 + L; T ,” 

1 
= 0.0448 x 0.587 = 0.0263, i, = 2120 cm/s 

I (7.15e) 

$ As in (6.44 we append factor 8 to the last (smalIest) term in the bracket. 
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84 
Fig. 10 (wnfinued) 

I: @* = 1 _t 0.1463 T: E 1 - 4.87Ty + 3z T; I = 
2 (7.15e) 

1 + 0.0033 x 0,758 = I*OOZS, R, = 2+30 x 10-e em 

1 + 0.0034 x 0,758 = 1*0026, R, = 2.30 x 10-g cm 1 

Figure S(a) shows 

x: & It = 2.8 x X0-2, 9& = lGO30 (7.fSe’) 

By time 7y the front tension has dropped, according to (6.7b), to 

I: --jp = - la84 x 10-a 7” 0*122 x OGEP = f- 1.84 f 8.08) x IO”, 

Pe = I - 4.38 = - 3*38 atm 

110 : -&, = - 1.84 x IO” + 0,122 x 0.02632 - (- 1.84 + 840) x lo”, 

Pa = 1 - 4.56 = - 3~56 atm 

(7.15f) 
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as compared with 

I: pv= -4atm 

in Fig. 9(c).$ The pressure on the frozen nucleus has risen by this time [see (6.16b)] to 

(7.W) 

I: o’oo406 bs(7J = 1.84 x 1O-5 - 0.12 x 0*02572 + m = (2 + 396) x 10-S 

ps(t~) = 1 + 215 = 216 atm t (7.15g) 

o’oo405 IIo: #s(T~) = 1.84 x 10-S - 0.12 x 0.02632 + m = (2 + 396) x IO-5 

As the nucleus grows the liquid tension at the front continues to decline (and the surrounding 
negative pressure region continues to contract), while the positive pressure on the solid nucleus also 
relaxes. The front pressure passes through the zero value, by (6.1 I), at the time and radius 

222’J 7; I 
213 

I: 7-c = 0.1300 1 - 0.001 + = 0.152, tc = 4.31 x IO-12 s 1 

‘; T," 1 
213 

110: TC = 0.1324 1 - O*OOl + = 0.155, Ic = 4.40 x 10-12s I I (7*15h) 
I: W, = 1.0025, R, = 2.30 x 10-s cm 

110 : 2-2, = 1.0026, R, = 2.30 x 1O-6 cm 

i.e. 7c practically coincides with T v: we have the case of Fig. 3 curve c on hand. The curve in Fig. g(c) 
[or rather, the data on which the curve is based] shows 

I: To:= 0.182, W, = 1.003 (7.15h’) 

Corresponding results for U, = 0.25 are [the units for (7.16b, 17b) -are listed in (7.7b)], by 
formulas I : 

-/M = 0.001756, js(0) = - 000135, T,, = 7.5, &‘, = 0.110, W, = 1.41 
1 (7.16a) 

--+u = 0.00148, +ZS = - 0.00117, TC = 8.74 x 104, .%‘e = 300 J 

- PM:= 9520, pS(o) = - 7310, te = 2.1 X lo-r2, -K,= 89000, Rv= 3.23 x lo-’ 

1 

(7.16b) 
- pv = SOOO, ps(tv) = - 6300, tc = 2.5 x 10-s, R, = 6.9 x 10-5 

and by formulas 110: 

--h&f = 0001756, js(O) = - 000135, TV = 8.0, iv = 0.117, WV = 1.47 (7.17a) 
-+v = 000167, us = - 000136, TV = 8.95 x 104,W, = 308 > 

- PM = 9520, ps(0) = - 7310, tv = 2.3 X 10-12, iv = 94000, R, = 3.38 x 10-7 

> 
(7.17b) 

- pu = 9040, ps(tv) = - 7400, tc = 2.5 X lo-s, Rc = 7.1 x 10-5 

$ This really is not visible from Fig. 9(c), but is provided by the computed data from which Fig. 9(c) was plotted. 
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as compared with the values in Figs. 6 and 9: 

I: ~2, = 18*8, L& = 0*0844,&@, = 2.27, te = 24 x 10-8, R, = 6-6 x 10-5 (7.16’) 

Two changes are noted in calculations (7.16), (7.17), as compared with the calculations leading 
to (7.15). One is a computational change. The iterative formula (6.4~) must now be used in a re- 
interpreted fashion. On calculating method I estimates of TV by iteration in accordance with (6.4b), 
one obtains successively 70 = 2.80, ~1 = 4.00, 72 = 5.18, 7s = 652, ~4 = 8.22, Q = 10.52; with 
ratios T~/T~-~ = 1.43, 1.30, l-260, 1.260, 1.292. After a certain convergence the ratios diverge again. 
The least inconsistent ratio, l-25, is obtained when T = 7.5. This we now adopt as the appropriate 
estimate of rV?. [It may be added that when the ratios do converge to 1, as in (7.15d), but poorly, 
then it is most expeditious to plot TV vs l/n and extrapolate to l/n = 0.1 

The second change is more fundamental. The pressure variation is now represented by curve b 
of Fig. 3, and TV, @& are calculated in accordance with (6.13): 

I: 
1.03 x 0*5092 

Tc = = 
3.06 10-6 1.12 10%,3’2 

8.74 x 104, tc = 2.48 x 10-s s 
x - x 

110: 
1.03 x 0.5162 

” = = 3.06 x 10-s - 0.91 x 1057,3’~ 8.95 x 104, tc = 2.54 x 10-s s i (7.18) 

I: BB, = 1*018~~‘2[1 - 1.327~;~‘~] = 300, & = 6.88 x 10-s cm 

110: g&c = 1~032~;‘~[1 - 1~056~,-~‘~] = 308, Irz, = 7.06 x 10-s cm i 

We plot in Fig. 10(a) vs undercooling, for the nickel nucleus, on the basis of similar, method 110 
calculations, Rn, Rv - 1. (Ro/Rn) - 1, as well as (RX/Rn) - 1. [Recall (6.10) that Rt; represents the 
least initial radius that is required so that a negative pressure region may develop in the liquid 
surrounding the nucleus.] The quantities tv, Rv, fc are plotted in Fig. IO(b). The curve tc has a high 
undercooling branch and a low undercooling branch [formulas (6.13) and (6.1 I)]. The ~scontinu- 
ous transition from one branch to the other occurs at a U, value intermediate to 0.25 and O-025; 
its precise location would have to be determined by plots of type Fig. 9(c) obtained from numerical 
integration for a host of VU values; this task we did not undertake. (pm - PM)M)atm = rM/RO and 
pm - pv are plotted in Fig. IO(c); ps(0) in Fig. 10(d); ps(tu) in Fig. 10(e). All plots are made for the 

cases Ro/R, = 21’3, 1.01, I-0001, as well as for the cases l?/Rff and &J?, where 

rT u* l?h’ XC ria 
-=l+--i- 
Rn ! 1 cTa,,!h 43 P(3) 

= 1 + 0*19ouu 

i?/Rn = 1 + 0.190 x lOi/“U, 

Formtda (7.19a) of J. W. Cahn is obtained by selecting Ro - Rn as the radius increase & - Rn 

that produces a departure of XT; from the maximum W mSx of the free energy W at R, [see, e.g. 
p. 238 of reference [4] for the expression of l+‘j: 

-nT,“= W- Wm”x=2aR2 ’ a2w(R’) (A0 _ &)2 

W = 4vu’Rz 
4+r Tf - Tco 

- 3 R3I’X’ T 
f 

(7.2Oa, b) 

Formula (7.19b) assumes a departure of 1OxT;. In other words, it is assumed that thermal fluctua- 

tions may produce nuclei of size &, or perhaps size i?. 

H-M.-Q 
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8. THE SPECIAL CASE E : 0 

In what has preceded it was tacitly assumed that E f 0, c + - 1, and division by E and 1 -/- t 
was freely undertaken. The important special case E = -- 1 (which closely represents the nucleation 
of vapor bubbles) will be relegated to a later study; here we summarize the modifications demanded 
by the special case E = 0. We may conceive of the metal as existing in various physical forms, 
distinguished only by the value of E. We want to investigate the dependence of the pressure field, 
in particular of PM, on E, all other properties of the metal being held constant. This curve [see 
(6.8b), (2.16a)l 

T, - Tm 1 1 E 
(8. la) 

is plotted for the case of nickel at 175°C undercooling and initial radius RO = 21’3Ra in Fig. 11, 
solid lines. 

On the other hand, when E = 0, then by (2.7b), (2.9a) also 

u(r) = ZfF = 0, p(r) = PF = pm (r 3 Ro) (8.2a, b) 

Thus there is no flow in the liquid, no accompanying pressure change; in particular, the pressure at 
the freezing front is the ambient pressure pm. The pressure on the solid phase is given by (6.15) ; 
the stagnation term GB2/2 is now absent. Furthermore, by (2.11, 18) the interface temperature (the 
freezing temperature) is now given by 

TF - (8.2~) 

The dynamic terms associated with ud are absent. Supplementing relation (8.la) which indicates 

r+o+: PM+-- a; E--fO_: p&n->+ co (8.lb, c) 

we now have 

E=O: PM=JPcc (8.ld) 

FIG. 11. Solid line and dot at origin indicates variation of maximum pressure pi with density parameter E by 
present theory; dashed line shows expected behavior in a more refined theory. 
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It seems that in a more refined description of the phenomenon, by utilizing more elaborate 
differential equations than those employed in section 2, the transition in p&i -pm from - co 
through 0 to + co as l changes from positive to negative values would have to take place somewhat 
in the fashion indicated by dashed lines in Fig. 11. Within the range 4 to G (where i < O-06, since 
nickel, E = 0.06, fits the present analysis) the behavior would have to depart from (8.la). Determina- 
tion of i, i for which peak 1~~1 occurs constitutes an interesting problem, outside the scope of the 
present study. 

When E is neither Of or 0- but is precisely zero, then the interface condition (8.2~) in conjunction 
with the initial values 

U(r)= UF”;O, W(O)= I, W(O)=0 (8.3a, b, c) 

imposes the requirement 
a,=ao=1, &=R, (8.4) 

Replacement of relations (5.11) by 

@= 1 +b3,2.3’2+b2~2+. . ., ~)1F=f~7+f3/273’2+. . ., %‘c=c3/2~“+~2~2+. . ., 

w = dl,z 4’2 + dl T + . . . , 1 = II/2 4’2 = &X/2) ~1’2, 8 = 1 (8.5) 

[equation (4.3) can no longer demand that nr > 2, since now @d = 0 and the &! term is absent in 
(8.2~); for the sake of simplicity we henceforth restrict ourselves to the I approximation] leads to 
equations for the coefficients analogous to (5.12:, 1213, 12:) which we do not write out. (8.2~) now 
gives rise, in place of (5.13), to the relation 

fi T + f3/2 ~-2)~ + . . . = U, [l - (1 - b3/2 9’2 - b2 ~2 + . . . I] 

It follows, in conjunction with the analog of (5.12& that 

_fI=fa,B=. . . =b3/2=b2=. . . =o 

@*a 

(8.7) 

W, is again found to be a radius of neutral equilibrium. 
Thus, in order that the process of freezing may get under way, it is necessary to relinquish (8.4) 

and the condition (8.3~) of zero initial velocity that prompted it. Writing 

9=l-+b 1/2~~‘~+b17+b3/273~~+. . ., U~==fo+f,,,r~‘~+f~~+. . ., 
UC = c~/~T~‘~+c~T+. . ., w=dx12r1’2+dlT+. . ., l=lllzr1’2=t/(~f2)73i2,s= 1 

(8.8) 

we find, in place of (5.120,, 12~, 120,, 13) the relations 

@.9z) 

T-1f2<~b,,,-(~+~)~>+7”<br+tb:I1+(Cli2-ff,e)~+(~-2~)~ 
L.fir2 f bl,afo 

&,z > 
+ t . . = b (8.9B) 
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foT--112 
< 

4 hi2 + + h/2 -~>+~r0(b~+b~,,+2b~,adiia+2d~,,+d~-2~ 

& fir2 
+ G + f. 

t 
+i h/2 + 42 

1 
-_ 

h/z I> 
+ . . . = 0 (8.90) 

~~<--fi + Cdl - Wd>+ +2<-fi/z + G%bl/z) + T(-_fi + Uw@n(bl - bf!,)) + . . . = 0 
(S.%) 

They lead to 

fo = Uec(l --~,I, &/a = - z + [($)‘+ 2(1 -+I)]~‘~ 1 

b,,,=2(&++&, cu~=(3b~,z-3~~,~+6~)~ , ‘8Jo) i 

fll2 = 

For example, when 

then 

&%&~12, e . . J 

X = R = 1, u, = 0.25, w, = 0.794 (8.1 la) 

fo = 0.05150, dl/z = 1.3064, bljz = 0.2245, cl/2 = 0.3624, 512 = 0.0446 (8.1 lb) 

In order that growth may start, a radius fluctuation to a value RO > R, is necessary. The surface 
temperature of the nucleus then jumps (instantaneously) from T, to T, + (r’ - T&l - @,), 
and freezing ensues with in$nite initiai velocity. Since both liquid and solid phases have the same 
density, no physical motion occurs, no inertia effects are involved, and compressibility plays no 

role. The freezing process for E = 0 is thus seen to be totally different from that of case 1 E[ << 1, 
and the question-as mentioned before-then arises how the transition from 1~1 < 1 to E = 0 
takes place. 
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Znsammenfassung-Wenn Nickel in seiner weniger dichten Schmelze erstarrt, die urn mehr als 175°C 
unter ihre Gleichgewichtserstammgstemperatur abgektihlt ist, zeigt das verfestigte Material-wie es 
zuerst von J. L. Walker beobachtet wurde-eine aufgelockerte Feinkonstruktur (vermutlich ah 
Ergebnis einer von den riesigen, negativen D&ken urn die wachsenden Keme verursachten Kavi tation), 
wohingegen bei geringerer Unter~~hlung als 175°C die beobachtete Struktur grobk&nig ist. Zweck 
der vgrliegenden An&se war, numerische (theoretische) Schiitzungen fiir die Driicke, Stromungs- 
geschwindigkeiten und fiir die damit verbundenen Zeitmassst&be festzulegen. Dies bedingte eine 
Studie iiber Erstarren, das sich aus einem endlichen Ursprungskeim entwickelt. Unter Verwendung 
einer “verallgemeinerten Orthog ~nalisations-Liisungsmethode” wird der Erstammgsprozess weiter 
auf der Basis der i~~mpr~siblen, nicht ~~~eits~h~tet~ Hy~~y~ik verfolgt, wobei die 
D~~~b~~i~eit der Erstammgstemperatur ebenfalts mit einbezogen wird. Die Losung des 
Hauptsystems der Differentialgleichungen wird ah eine Summe &x-l Fk von [vektor] Funktionen 
F&) ([ ist die dimensionslnse Radialkoordinate) angefiihrt, deren Zeitabegkeit (T ist die 
dimensionslose Zeit) von den Orthogonalitiitsbedingungen (Grenxschichtintegralgleichungen) 
bestimmit wird, worin die Inte~~den-Gewichtsfu~tionen vom Typ [km verwendet werden. 
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k = O,l, . . . , K - 1. Wir beziehen auf Naherungen I, II, III, . . . wenn K = 1, 2, 3, . . . (K= 1 
entspricht der konventionellen Grenzschichtliisung vtm Typ Karman-Pohlhausen-Goodman- 
Veynik) und auf die Naherungen 111, IIg, 110, wenn k = 2 und M = 1, +, 0. Wenn fur xF&) eine 
Reihe von in 7 gestiirten und in 8 abklingenden Exponenten verwendet wird, unterscheidet sich das 
Diagramm fur die Losung 110 in seinem asymptotischen Verhalten (T + co) nicht von der genau 
bekarmten strengen Losung des Problems, wo der Kern vom Radius 0 aus wlchst und die Druck- 
abhangigkeit der Erstarrungstemperatur nicht beachtet wird. Dieser asymptotische Bereich wird 
jedoch erst erreicht, wenn ungeflhr 10-7 s vcm Wachstumsbeghm an vergangen sind, wahrend der 
maximale Fltissigkeitsstrcm zum wachsenden Kern (bei einer 100 m/s iibersteigenden Geschwindig- 
keit) in den ersten lo-l1 s erfc Igt und van Spannungen van mehreren tausend Atmospharen begleitet 
wird. Dieser erste Teil des Phanomens (bis 10-l’ s) kann durch in ~112 in den Stiirfaktoren ansteigende 
Potenzreihen, der letzte (nach 1O-7 s) durch in 7 1/z abfallende Potenzreihen dargestellt werden. Der 
riesige dazwischenliegende Zeitanteil muss durch numerische Integration des zugehijrigen Differential- 
gleichungssystem uberbriickt werden. Ausser der Besttitigung der erwarteten Druckverteilung ergab 
die Analyse such ein unerwartetes Ergebnis. Der Erstarrungsvcrgang, wie er jetzt beschrieben wurde, 
unterscheidet sich fiir den Fall der genauen Null-Dichtelnderung viillig van dem fur infinitesimale 
Dichteanderung. Letztere beginnt vc n einem endlichen Anfangsradius ausgehend mit der Geschwindig- 
keit 0, die erstere mit unbegrenzter Geschwindigkeit. Diese Unstetigkeit (mit der Dichtelnderung) in 

der Losung zeigt, dass weitere Studien niitig sind. 

Anaoraqmr-Horna HnHeJIb 3aMepsaer B CBOeM McKee IIJIOTHOM pacnnase, OXJIaWAeHHOM 
6onee 9eM na 175” nnme csoel paBKosecHoti TemnepaTypH saMepaaKwI, 3aTsepneBaloIqkIti 
MaTepHan npeAcTaBnaeT co602t, KaIE BnepBbIe Ha6nIonan &K. 3. YOJIKep, MeJIK03epHMCTyIO 

AwznepcHyIo ~~py~~ypy (~OBMARMOMY, KaK pe3ynbTaT KaBuTaqui, BbI3BaHKoB ~~JSUIMII 
OTp~rlaTenbH~MllAaBneHLI~MII,OKpyHtaHJIllllMapaCTy~Eze~Apa),BTOBpeMaKaKnpllOXnam- 
AeHEillMeHee r31yBoKo~, 4eM yKa3aHHOe,Ha6jIIOAaeMafI CTpyKTypa 6yneT KpynH03epHMCTOti. 
UeJIb HaCTORIqeP pa6oTbI COCTORT B HaXO~~eHHIl WlCJIeHHbIX (TeOpeTWIeCKHX) OqeHOK 
AaBJIeHMti CHOpOCTet nOTOKa II COOTBeTCTByIOUElX MaCIIITa6OB BpeMeHM. 3TO BbIHymaaeT 
paccnfaTpmsaTb 3aMepaaane KaKnpo~ecc,pa3BLisaIoIqnticFio~Kaqa~bHbIx Raep (3aponbImeti) 
HOHe4HbIXpa3MepOB.~pO~eCC3aMep3aHMcIOnllCbIBaeTC~HaOCHOBe AHHaMHKHHeCWIMaeMOti 
HeBHBKOti XIIInKOCTLI C HCnOJIb30BaHHeM peIIIeHI$ IIOJIyYeHHbIX s?vleTOAOM 0606WeHHOfi 
OpTOrOHa~~3a~~~~~MCy~eTOM3aBEICHMOCTEITeM~epaTypbI3a~ep3aHMFiOT~aB~eH~~.~eIueHMe 

OCHOBHOfiCElCTeMbI@i~~epeH~IiaJIbHbIX ypaBHeHHtinpe~CTaBJIHeTC~ItaKCyMMaBEIAa~:DK-lFk 
BeKTOpHbIX+yHKI@i R(f)@ eCTb 6e3pa3MepHaHpaAManbHallKOOp~nHaTa),4bR3aBHCHMOCTb 
OTBpeMeHIl(-6e3pa3MepHOeB~eM~)Onpe~e~~eTC~i3yC~OBM~OpTOrOHaJrbIIOCTEl(~HTerpa~b- 
HbIeypaBHeHRR~JIfIIIOrpaHWIHOrO CJIoR)CIICnOJIb3OBaHIIeMB nOAMIiTerpa~bHbIXBbIpa?KeHLiRX 
BeCOBbIX $yHICI@l THna f""; k = o,l..., K - 1. 

MbI wAnonbaye81 npH6nwKeHnn 1, 11, 111 . IiorAa K = 1, 2, 3 . . . (K = 1 COOTBeT- 
cTnyeT 06b1q~o~y pemewuo norpaHnsHor0 cj10R Tuna ICapMaHa-nonbray3eKa-ryAMeKa- 
BetiHnKa) II npH6nHmes&uI 111, Ilb, 110 npu K = 2 II m = 1, t,O. HcnonbayR ~JIR CR(g) 
nOCJIeAOBaTeJIbHOCTb B03MyWeHHbIX (no 7) 3aTyXalOURX (no .$) IIOIEa3aTeJIbHbIX @yHKI@, 
6b1jro HatifieHO, gT0 rpa@IK peIIIeHIlH no n0 CBOeMy aCI4MIITOTWIeCKOMy IIOBefieHMIO ("PM 
T-+ a)He OTJIMYaeTCR OTXOpOIIIO H3BeCTHOrO TO'IHOrO peIIIeHWI Lla~a=IM,KOrAa RApO paCTeT 
0T HyaeBoro paAHyca, a 3aB5icnnlocTb TemnepaTypbI 3aMepaaHIw 0~ naBneH5w He ~YRT~I- 
BaeTCH. OAHaKO 3TOT aC&IMnTOTWIeCKI%ti nepHOH He HaCTyIIaeT paHbUIe YenI npHtkIIS3HTeJIbHO 
10s7cefs nocne KaqanapocTa,Torna KaKMaKcllMaJIbKbIi Hanop wqKoc~~~HapacTy~eef~~po 
(co CKOpOCTbIO BbIIIIe 100 M/CeK) npOllCXOART B TeYeHllHnepBbIX1O-llCeKEICOnpOBOIKAaeTCFI 
IIanpFI~eHHHMH B HeCKOJIbKO TbICWI aTMOC@ep. 3Ty nepByI0 <IaCTb npOUeCCa (A0 lo-= CeK) 
MOmHO BbIpa3nTb BO3paCTaIOWMM CTeIIeHHbIM pHA0.n n0 712 IIOCJIe~H& yqaCTOK (nOCJIe 10-’ 
ceK)-y6bIBaIo~a~ CTeneHHbIM pFIAOM no ~1 2; a noBeAeKHe B 6onbIIIOP npOMeiKyTOqHOti 
06nacTu MOHFHO OnpeAeJIPITb npM IIOMOqll qMCJIeHHOr0 &IHTerpI%pOBaHPIfl COOTBeTCTByIO~et 
CMCTeMbI ~HIjj@epeHIJPIaJIbHbIX ypaBHeHHti. KpOMe nO~TBep~AeHI4~ O?KKIIAaeMOrO paCnpeaeJIe- 
HHR AaBJIeHLlR aHaJIH3 AaJIHeO?KE1AaHHbIi%pe3ynbTaT. HaK Tenepb OseBHAHO,npOqeCC 3aMep- 
3aHLIFI AJIH CJIyYaR HyJIeBOrO ll3MeHeHIlFf IIJIOTHOCTH COBepIIIeHHO OTJIWIeH OT npOqeCCa 
3aMepaaKwI AJIH 6eCKOHeYHO Manor0 M3MeHeHHR wIOTHOCTLI. rIocneAHEln Ha9EIHaeTCR c 
HaYaJIbHbIX RAep KOHeYHbIX pa3MepOB IIpEz HyJIeBOt CKOpOCTH,a nepBbIfi-npH 6eCKOHesHOt 
CKopOCTII. 3TOT pa3pbIB (C I43MeHeHLleM IIJIOTHOCTH) B peIneHIlRX yKa3bIBaeT Ha HeO6XOAM- 

MocTb AanbHetiruero Irayseancl. 


